Abstract We study holomorphic mapsFfrom a smooth Levi non-degenerate real hypersurface$$ M_{\ell }\subset {\mathbb {C}}^n $$ into a hyperquadric$$ {\mathbb {H}}_{\ell '}^N $$ with signatures$$ \ell \le (n-1)/2 $$ and$$ \ell '\le (N-1)/2,$$ respectively. Assuming that$$ N - n < n - 1,$$ we prove that if$$ \ell = \ell ',$$ thenFis either CR transversal to$$ {\mathbb {H}}_{\ell }^N $$ at every point of$$ M_{\ell },$$ or it maps a neighborhood of$$ M_{\ell } $$ in$$ {\mathbb {C}}^n $$ into$$ {\mathbb {H}}_{\ell }^N.$$ Furthermore, in the case where$$ \ell ' > \ell ,$$ we show that ifFis not CR transversal at$$0\in M_\ell ,$$ then it must be transversally flat. The latter is best possible.
more »
« less
This content will become publicly available on March 14, 2026
Lower bounds for incidences
Abstract Let$$p_{1},\ldots ,p_{n}$$ be a set of points in the unit square and let$$T_{1},\ldots ,T_{n}$$ be a set of$$\delta $$ -tubes such that$$T_{j}$$ passes through$$p_{j}$$ . We prove a lower bound for the number of incidences between the points and tubes under a natural regularity condition (similar to Frostman regularity). As a consequence, we show that in any configuration of points$$p_{1},\ldots , p_{n} \in [0,1]^{2}$$ along with a line$$\ell _{j}$$ through each point$$p_{j}$$ , there exist$$j\neq k$$ for which$$d(p_{j}, \ell _{k}) \lesssim n^{-2/3+o(1)}$$ . It follows from the latter result that any set of$$n$$ points in the unit square contains three points forming a triangle of area at most$$n^{-7/6+o(1)}$$ . This new upper bound for Heilbronn’s triangle problem attains the high-low limit established in our previous work arXiv:2305.18253.
more »
« less
- Award ID(s):
- 2246659
- PAR ID:
- 10587111
- Publisher / Repository:
- Springer Science + Business Media
- Date Published:
- Journal Name:
- Inventiones mathematicae
- ISSN:
- 0020-9910
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The double differential cross sections of the Drell–Yan lepton pair ($$\ell ^+\ell ^-$$ , dielectron or dimuon) production are measured as functions of the invariant mass$$m_{\ell \ell }$$ , transverse momentum$$p_{\textrm{T}} (\ell \ell )$$ , and$$\varphi ^{*}_{\eta }$$ . The$$\varphi ^{*}_{\eta }$$ observable, derived from angular measurements of the leptons and highly correlated with$$p_{\textrm{T}} (\ell \ell )$$ , is used to probe the low-$$p_{\textrm{T}} (\ell \ell )$$ region in a complementary way. Dilepton masses up to 1$$\,\text {Te\hspace{-.08em}V}$$ are investigated. Additionally, a measurement is performed requiring at least one jet in the final state. To benefit from partial cancellation of the systematic uncertainty, the ratios of the differential cross sections for various$$m_{\ell \ell }$$ ranges to those in the Z mass peak interval are presented. The collected data correspond to an integrated luminosity of 36.3$$\,\text {fb}^{-1}$$ of proton–proton collisions recorded with the CMS detector at the LHC at a centre-of-mass energy of 13$$\,\text {Te\hspace{-.08em}V}$$ . Measurements are compared with predictions based on perturbative quantum chromodynamics, including soft-gluon resummation.more » « less
-
Abstract LetXbe a compact normal complex space of dimensionnandLbe a holomorphic line bundle onX. Suppose that$$\Sigma =(\Sigma _1,\ldots ,\Sigma _\ell )$$ is an$$\ell $$ -tuple of distinct irreducible proper analytic subsets ofX,$$\tau =(\tau _1,\ldots ,\tau _\ell )$$ is an$$\ell $$ -tuple of positive real numbers, and let$$H^0_0(X,L^p)$$ be the space of holomorphic sections of$$L^p:=L^{\otimes p}$$ that vanish to order at least$$\tau _jp$$ along$$\Sigma _j$$ ,$$1\le j\le \ell $$ . If$$Y\subset X$$ is an irreducible analytic subset of dimensionm, we consider the space$$H^0_0 (X|Y, L^p)$$ of holomorphic sections of$$L^p|_Y$$ that extend to global holomorphic sections in$$H^0_0(X,L^p)$$ . Assuming that the triplet$$(L,\Sigma ,\tau )$$ is big in the sense that$$\dim H^0_0(X,L^p)\sim p^n$$ , we give a general condition onYto ensure that$$\dim H^0_0(X|Y,L^p)\sim p^m$$ . WhenLis endowed with a continuous Hermitian metric, we show that the Fubini-Study currents of the spaces$$H^0_0(X|Y,L^p)$$ converge to a certain equilibrium current onY. We apply this to the study of the equidistribution of zeros inYof random holomorphic sections in$$H^0_0(X|Y,L^p)$$ as$$p\rightarrow \infty $$ .more » « less
-
Abstract We show that the affine vertex superalgebra V^{k}(\mathfrak{osp}_{1|2n})at generic level 𝑘 embeds in the equivariant 𝒲-algebra of \mathfrak{sp}_{2n}times 4nfree fermions.This has two corollaries:(1) it provides a new proof that, for generic 𝑘, the coset \operatorname{Com}(V^{k}(\mathfrak{sp}_{2n}),V^{k}(\mathfrak{osp}_{1|2n}))is isomorphic to \mathcal{W}^{\ell}(\mathfrak{sp}_{2n})for \ell=-(n+1)+(k+n+1)/(2k+2n+1), and(2) we obtain the decomposition of ordinary V^{k}(\mathfrak{osp}_{1|2n})-modules into V^{k}(\mathfrak{sp}_{2n})\otimes\mathcal{W}^{\ell}(\mathfrak{sp}_{2n})-modules.Next, if 𝑘 is an admissible level and ℓ is a non-degenerate admissible level for \mathfrak{sp}_{2n}, we show that the simple algebra L_{k}(\mathfrak{osp}_{1|2n})is an extension of the simple subalgebra L_{k}(\mathfrak{sp}_{2n})\otimes{\mathcal{W}}_{\ell}(\mathfrak{sp}_{2n}).Using the theory of vertex superalgebra extensions, we prove that the category of ordinary L_{k}(\mathfrak{osp}_{1|2n})-modules is a semisimple, rigid vertex tensor supercategory with only finitely many inequivalent simple objects.It is equivalent to a certain subcategory of \mathcal{W}_{\ell}(\mathfrak{sp}_{2n})-modules.A similar result also holds for the category of Ramond twisted modules.Due to a recent theorem of Robert McRae, we get as a corollary that categories of ordinary L_{k}(\mathfrak{sp}_{2n})-modules are rigid.more » « less
-
Abstract LetXbe ann-element point set in thek-dimensional unit cube$$[0,1]^k$$ where$$k \ge 2$$ . According to an old result of Bollobás and Meir (Oper Res Lett 11:19–21, 1992) , there exists a cycle (tour)$$x_1, x_2, \ldots , x_n$$ through thenpoints, such that$$\left( \sum _{i=1}^n |x_i - x_{i+1}|^k \right) ^{1/k} \le c_k$$ , where$$|x-y|$$ is the Euclidean distance betweenxandy, and$$c_k$$ is an absolute constant that depends only onk, where$$x_{n+1} \equiv x_1$$ . From the other direction, for every$$k \ge 2$$ and$$n \ge 2$$ , there existnpoints in$$[0,1]^k$$ , such that their shortest tour satisfies$$\left( \sum _{i=1}^n |x_i - x_{i+1}|^k \right) ^{1/k} = 2^{1/k} \cdot \sqrt{k}$$ . For the plane, the best constant is$$c_2=2$$ and this is the only exact value known. Bollobás and Meir showed that one can take$$c_k = 9 \left( \frac{2}{3} \right) ^{1/k} \cdot \sqrt{k}$$ for every$$k \ge 3$$ and conjectured that the best constant is$$c_k = 2^{1/k} \cdot \sqrt{k}$$ , for every$$k \ge 2$$ . Here we significantly improve the upper bound and show that one can take$$c_k = 3 \sqrt{5} \left( \frac{2}{3} \right) ^{1/k} \cdot \sqrt{k}$$ or$$c_k = 2.91 \sqrt{k} \ (1+o_k(1))$$ . Our bounds are constructive. We also show that$$c_3 \ge 2^{7/6}$$ , which disproves the conjecture for$$k=3$$ . Connections to matching problems, power assignment problems, related problems, including algorithms, are discussed in this context. A slightly revised version of the Bollobás–Meir conjecture is proposed.more » « less
An official website of the United States government
