skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Evidence for amorphous calcium carbonate originated mid-lithospheric discontinuities
The cratonic lithosphere is a vast host for deep recycled carbon, trapping up to several weight percent CO2 at depths overlapping the seismic mid-lithospheric discontinuities (MLDs). However, the role of carbonates, especially for the latest discovered amorphous calcium carbonate (CaCO3), is underestimated in the formation of MLDs. Using the pulse-echo-overlap method in a Paris-Edinburgh press coupled with synchrotron X-ray diffraction, we explored the acoustic velocities of CaCO3 under high pressure-temperature (P-T) conditions relevant to the cratonic lithosphere. Two anomalous velocity drops were observed associated with the phase transition from aragonite to amorphous phase and with the pressure-induced velocity drop in the amorphous phase around 3 GPa, respectively. Both drops are comparable with approximately 35% and 52% reductions for compressional (VP) and shear (VS) wave velocities, respectively. The VP and VS values of the amorphous CaCO3 above 3 GPa are about 1/2 and 1/3 of those of the major upper-mantle minerals, respectively. These velocity reductions caused by the presence of CaCO3 would readily cause MLDs at depths of 70–120 km dependent on the geotherm even if only 1–2 vol.% CaCO3 is present in the cratonic lithosphere.  more » « less
Award ID(s):
2243184
PAR ID:
10587199
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Cell Press
Date Published:
Journal Name:
The Innovation Geoscience
Volume:
2
Issue:
4
ISSN:
2959-8753
Page Range / eLocation ID:
100098
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The goal of this study is to constrain the origins of layering in the seismic velocity structure within the cratonic mantle lithosphere (i.e. mid‐lithospheric discontinuities [MLDs]). For long‐lived stations in cratons worldwide, we calculated S‐to‐P converted phase receiver function stacks using time domain deconvolution and a k‐means algorithm to select robust, consistent receiver functions. Negative MLDs appear in only 50% of the receiver function stacks, indicating that negative MLDs are common but intermittent. The negative MLDs correspond to shear velocity drops of 1%–4%, which could be caused by layers of minerals created by metasomatism, although vertical layering in seismic anisotropy cannot be ruled out. In craton interiors, negative MLDs have a lower amplitude (<3% velocity drops) and can be explained by metasomatism of the original Archean mantle. Negative MLD amplitudes increase with decreasing upper mantle shear velocity (toward the outer margins of the cratons), but do not depend on the age of the craton. Thus, negative MLD amplitudes are not dominated by age‐related variations in the cratonic mantle composition, and, instead, are more strongly correlated with proximity to tectonic and metasomatic activity that occurred long after craton formation. Negative MLDs are less numerous among stations that have Paleoproterozoic and Archean thermotectonic ages, consistent with the view that shallow release of slab‐derived fluids during early “warm” subduction was less favorable for negative MLD formation. We also observe velocity gradients below 150 km at stations in craton boundaries and interiors, indicating the presence of seismic velocity changes at the cratonic lithosphere‐asthenosphere boundary and/or Lehmann discontinuity. 
    more » « less
  2. null (Ed.)
    Abstract The high-pressure phases of oxyhydroxides (δ-AlOOH, ε-FeOOH, and their solid solution), candidate components of subducted slabs, have wide stability fields, thus potentially influencing volatile circulation and dynamics in the Earth’s lower mantle. Here, we report the elastic wave velocities of δ-(Al,Fe)OOH (Fe/(Al + Fe) = 0.13, δ-Fe13) to 79 GPa, determined by nuclear resonant inelastic X-ray scattering. At pressures below 20 GPa, a softening of the phonon spectra is observed. With increasing pressure up to the Fe 3+ spin crossover (~ 45 GPa), the Debye sound velocity ( v D ) increases. At higher pressures, the low spin δ-Fe13 is characterized by a pressure-invariant v D . Using the equation of state for the same sample, the shear-, compressional-, and bulk-velocities ( v S , v P , and v Φ ) are calculated and extrapolated to deep mantle conditions. The obtained velocity data show that δ-(Al,Fe)OOH may cause low- v Φ and low- v P anomalies in the shallow lower mantle. At deeper depths, we find that this hydrous phase reproduces the anti-correlation between v S and v Φ reported for the large low seismic velocity provinces, thus serving as a potential seismic signature of hydrous circulation in the lower mantle. 
    more » « less
  3. Abstract Mid‐lithosphere discontinuities are seismic interfaces likely located within the lithospheric mantle of stable cratons, which typically represent velocities decreasing with depth. The origins of these interfaces are poorly understood due to the difficulties in both characterizing them seismically and reconciling the observations with thermal‐chemical models of cratons. Metasomatism of the cratonic lithosphere has been reported by numerous geochemical and petrological studies worldwide, yet its seismic signature remains elusive. Here, we identify two distinct mid‐lithosphere discontinuities at ∼87 and ∼117 km depth beneath the eastern Wyoming craton and the southwestern Superior craton by analyzing seismic data recorded by two longstanding stations. Our waveform modeling shows that the shallow and deep interfaces represent isotropic velocity drops of 2%–8% and 4%–9%, respectively, depending on the contributions from changes in radial anisotropy and density. By building a thermal‐chemical model including the regional xenolith thermobarometry constraints and the experimental phase‐equilibrium data of mantle metasomatism, we show that the shallow interface probably represents the metasomatic front, below which hydrous minerals such as amphibole and phlogopite are present, whereas the deep interface may be caused by the onset of carbonated partial melting. The hydrous minerals and melts are products of mantle metasomatism, with CO2‐H2O‐rich siliceous melt as a probable metasomatic reagent. Our results suggest that mantle metasomatism is probably an important cause of mid‐lithosphere discontinuities worldwide, especially near craton boundaries, where the mantle lithosphere may be intensely metasomatized by fluids and melts released by subducting slabs. 
    more » « less
  4. Abstract We develop a 3‐D isotropic shear velocity model for the Alaska subduction zone using data from seafloor and land‐based seismographs to investigate along‐strike variations in structure. By applying ambient noise and teleseismic Helmholtz tomography, we derive Rayleigh wave group and phase velocity dispersion maps, then invert them for shear velocity structure using a Bayesian Monte Carlo algorithm. For land‐based stations, we perform a joint inversion of receiver functions and dispersion curves. The forearc crust is relatively thick (35–42 km) and has reduced lower crustal velocities beneath the Kodiak and Semidi segments, which may promote higher seismic coupling. Bristol Bay Basin crust is relatively thin and has a high‐velocity lower layer, suggesting a dense mafic lower crust emplaced by the rifting processes. The incoming plate shows low uppermost mantle velocities, indicating serpentinization. This hydration is more pronounced in the Shumagin segment, with greater velocity reduction extending to 18 ± 3 km depth, compared to the Semidi segment, showing smaller reductions extending to 14 ± 3 km depth. Our estimates of percent serpentinization from VSreduction and VP/VSare larger than those determined using VPreduction in prior studies, likely due to water in cracks affecting VSmore than VP. Revised estimates of serpentinization show that more water subducts than previous studies, and that twice as much mantle water is subducted in the Shumagin segment compared to the Semidi segment. Together with estimates from other subduction zones, the results indicate a wide variation in subducted mantle water between different subduction segments. 
    more » « less
  5. Abstract Omphacite is a major mineral phase of eclogite, which provides the main driving force for the slab subduction into the Earth's interior. We have measured the single‐crystal elastic moduli of omphacite at high pressures for the first time up to 18 GPa at ambient temperature using Brillouin spectroscopy. A least squares fit of the velocity‐pressure data to the third‐order finite strain equation of state yieldsKS0′ = 4.5 (3),G0′ = 1.6 (1) withρ0 = 3.34 (1) g/cm3,KS0 = 123 (3) GPa, andG0 = 74 (2) GPa. In addition, the synchrotron single‐crystal X‐ray diffraction data have been collected up to 18 GPa and 700 K. The fitting to Holland‐Powell thermal‐pressure equation of state yieldsKT0′ = 4.6 (5) andα0 = 2.7 (8) × 10−5 K−1. Based on the obtained thermoelastic parameters of omphacite, the anisotropic seismic velocities of eclogite are modeled and compared with pyrolite between 200 and 500 km. The largest contrast between the eclogite and pyrolite in terms of seismic properties is observed between ~310 and 410 km. 
    more » « less