ABSTRACT Despite the improvements seen in efficiency of GaAs cells over the years, there remains room for improvement for it to approach the theoretical single junction limit posited by Shockley and Quiesser decades ago. One of the more pursued options is the growth of quantum wells within the structure of GaAs to enhance its photon absorption below its bandgap. Multiple Quantum Wells (MQW) have been an ongoing topic of research and discussion for the scientific community with structures like InGaAs/GaAs and InGaP/GaAs quantum wells producing promising results that could potentially improve overall energy conversion. Here, we used WEIN2K, a commercial density functional theory package, to study the ternary compound Ga 1-x Tl x As and determine its electronic properties. Using these results combined with experimental confirmation we extend these properties to simulate its application to form a MQW GaAs/ Ga 1-x Tl x As solar cell. Ga 1-x Tl x As is a tunable ternary compound, with its bandgap being strongly dependent on the concentration of Tl present. Concentrations of Tl as low as 7% can reduce the bandgap of Ga 1-x Tl x As to roughly 1.30 eV from GaAs’s 1.45 eV at room temperature with as little as a 1.7% increase in lattice constant. The change in bandgap, accompanied by the relatively small change in lattice constant makes Ga 1-x Tl x As a strong candidate for a MQW cell with little to no strain balancing required within the structure to minimize unwanted defects that impede charge collection within the device. Our GaAs photodiode with TlGaAs MQWs shows an expanded absorption band and improved conversion efficiency over the standard GaAs photovoltaic cell with dilute concentrations of Tl incorporated into the compound. 
                        more » 
                        « less   
                    This content will become publicly available on November 1, 2025
                            
                            A Broadband Light‐Trapping Nanostructure for InGaP/GaAs Dual‐Junction Solar Cells Using Nanosphere Lithography‐Assisted Chemical Etching
                        
                    
    
            III–V‐based multijunction solar cells have become the leading power generation technology for space applications due to their high power conversion efficiency and reliable performance in extraterrestrial environments. Thinning down the absorber layers of multijunction solar cells can considerably reduce the production cost and improve their radiation hardness. Recent advances in ultrathin GaAs single‐junction solar cells suggest the development of light‐trapping nanostructures to increase light absorption in optically thin layers within III–V‐based multijunction solar cells. Herein, a novel and highly scalable nanosphere lithography‐assisted chemical etching method to fabricate light‐trapping nanostructures in InGaP/GaAs dual‐junction solar cells is studied. Numerical models show that integrating the nanostructured Al2O3/Ag rear mirror significantly enhances the broadband absorption within the GaAs bottom cell. Results demonstrate that the light‐trapping nanostructures effectively increase the short‐circuit current density in GaAs bottom cells from 14.04 to 15.06 mA cm−2. The simulated nanostructured InGaP/GaAs dual‐junction structure shows improved current matching between the GaAs bottom cell and the InGaP top cell, resulting in 1.12x higher power conversion efficiency. These findings highlight the potential of light‐trapping nanostructures to improve the performance of III‐V‐based multijunction photovoltaic systems, particularly for high‐efficiency applications in space. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2308817
- PAR ID:
- 10587852
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Solar RRL
- Volume:
- 8
- Issue:
- 22
- ISSN:
- 2367-198X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Inverted metamorphic (IMM) multijunction solar cells represent a promising material platform for ultrahigh efficiency photovoltaic systems (UHPVs) with a clear pathway to beyond 50% efficiency. The conventional device processing of IMM solar cells, however, typically involves wafer bonding of a centimeter‐scale die and destructive substrate removal, thereby imposing severe restrictions in achievable cell size, type of module substrate, spatial layout, as well as cost effectiveness. Here, we report material design and fabrication strategies for microscale triple‐junction IMM (3J IMM) Ga0.51In0.49P/GaAs/In0.26Ga0.74As solar cells that can overcome these difficulties. Specialized schemes of delineation and undercut etching enable the defect‐free release of microscale IMM solar cells and printed assemblies on a glass substrate in a manner that preserves the growth substrate, where efficiencies of 27.3% and 33.9% are demonstrated at simulated AM1.5D one‐ and 351 sun illumination, respectively. A composite carrier substrate where released IMM microcells are formed in fully functional, print‐ready configurations allows high‐throughput transfer printing of individual IMM microcells in a programmable spatial layout on versatile choices of module substrate, all desired for CPV applications.more » « less
- 
            Improving the efficiency of solar cells is important as it is a sustainable way of energy production with a relatively low power conversion efficiency (PCE). To enhance the efficiency of solar cells, textures can be introduced on the surface which can minimize light ray reflectance, leading to increased light absorption and improvement in overall efficiency. Introduction of texture can also improve the hydrophobicity of the surface which can enhance the self-cleaning capability of solar panels. In this study, a MATLAB-based user interface is developed to facilitate assessing the sunlight absorption in silicon-based solar cells having top layer as a microtextured surface. The user interface employs a multi-faceted mesh-grid algorithm to design 3D textural surface geometries. Core to the program’s functionality is advanced ray tracing simulations that identify points of light intersection on these textures and determine the trajectory of light upon reflection. A notable feature of this user interface is its capability to simulate and analyze the complex phenomenon of multi-reflection in the structure. This iterative process allows for a comprehensive understanding of light interactions in textured surfaces, to find the best structure for maximum absorption. This user-interface provides clarity and ease of use in modeling and analyzing light absorption in textured solar cell surfaces. The modeling framework is validated using experimental observation, and the impact of six 3D surface textures on sunlight absorption of silicon solar cell is studied using the simulation framework. According to the simulation findings, the cavity texture provides more consistent light absorption compared to its protrusion counterpart. Furthermore, hemispherical cavities exhibit consistently high absorption across various incident angles. The results provide useful insights for improving light absorption in the solar cell.more » « less
- 
            Dye-sensitized solar cells (DSSCs) hold unique promise in solar photovoltaics owing to their low-cost fabrication and high efficiency in ambient conditions. However, to improve their commercial viability, effective, and low-cost methods must be employed to enhance their light harvesting capabilities, and hence photovoltaic (PV) performance. Improving the absorption of incoming light is a critical strategy for maximizing solar cell efficiency while overcoming material limitations. Mesoporous silica nanoparticles (MSNs) were employed herein as a reflective layer on the back of transparent counter electrodes. Chemically synthesized MSNs were applied to DSSCs via bar coating as a facile fabrication step compatible with roll-to-roll manufacturing. The MSNs diffusely scatter the unused incident light transmitted through the DSSCs back into the photoactive layers, increasing the absorption of light by N719 dye molecules. This resulted in a 20% increase in power conversion efficiency (PCE), from 5.57% in a standard cell to 6.68% with the addition of MSNs. The improved performance is attributed to an increase in photon absorption which led to the generation of a higher number of charge carriers, thus increasing the current density in DSSCs. These results were corroborated with electrochemical impedance spectroscopy (EIS), which showed improved charge transport kinetics. The use of MSNs as reflectors proved to be an effective practical method for enhancing the performance of thin film solar cells. Due to silica’s abundance and biocompatibility, MSNs are an attractive material for meeting the low-cost and non-toxic requirements for commercially viable integrated PVs.more » « less
- 
            Colloidal quantum dots (CQDs) are of interest for photovoltaic applications such as flexible and multijunction solar cells, where solution processability and infrared absorption are crucial; however, current CQD solar cell performance is limited by the hole transport layers (HTLs) used in the cells. We report on a method to develop new HTLs for the highest-performing PbS CQD solar cell architecture by tuning the stoichiometry via sulfur infiltration of the p-type CQD HTL to increase its doping density and carrier mobility. Using SCAPS simulations, we predict that increased doping density and mobility should improve the performance of the solar cells. We show that sulfur doping of the current HTL is a facile and effective method to boost the performance of CQD photovoltaics.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
