skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on March 18, 2026

Title: Spin states of Europa and Ganymede
Radar speckle tracking observations of Europa and Ganymede with the Goldstone Solar System Radar and the Green Bank Telescope in 2011-2023 yield estimates of their spin axis orientations to ~0.01 degrees. These measurements conform to the expected 30-year precessional cycle and provide insights into the moons' Cassini States. I will describe the latest results and discuss new scientific prospects associated with these observations. First, the spin state can reveal the presence of a subsurface ocean: a decoupling between the icy shell and the interior results in a different obliquity than that of a solid body. Second, an angular deviation from the strict Cassini state enables estimates of energy dissipation. Third, a measurement of librations, if detectable, would enable a measurement of the shell's moment of inertia and provide bounds on the rheology and thickness of the shell. Fourth, the obliquity may explain remarkable surface features, such as the distribution and orientation of cycloids, strike-slip faults, and lineaments on Europa. Fifth, knowledge of the obliquity is required to enable tidal heating calculations. Finally, these measurements are expected to facilitate Clipper and JUICE operations and prevent initial, large mapping errors in spacecraft data products.  more » « less
Award ID(s):
2408493
PAR ID:
10588752
Author(s) / Creator(s):
Publisher / Repository:
EGU
Date Published:
Format(s):
Medium: X
Institution:
UCLA
Sponsoring Org:
National Science Foundation
More Like this
  1. Jupiter's icy moon Europa is currently seen as the most habitable world closest to Earth. Data from the space mission Galileo supported the presence of a global subsurface water ocean in direct contact with a rocky mantle, implying possible rock-water processes similar to those occurring on Earth's ocean floor, which is teeming with life. Although Juno can provide occasional glimpses of the Galilean satellites, close-up observations are not expected until the arrival of Europa Clipper and JUICE in the Jovian system. In the meantime, radar astronomy can help expand our understanding of this intriguing ocean world.There are ongoing efforts to determine Europa's obliquity from radar echoes observed with the Goldstone Solar System Radar and the Green Bank Telescope [1]. In this contribution, we will present our latest models for icy moon obliquity and nutations, and demonstrate the need for precise modelling of elastic deformation in the ice shell. We will also investigate possible resonant amplification of the obliquity due to ocean dynamics.This work is financially supported by the Belgian Science Policy Office (BELSPO) through the BRAIN.be-2.0 programme.[1] Margot J.-L., Spin states of Europa and Ganymede, European Geosciences Union General Assembly 2025 
    more » « less
  2. Abstract Jupiter’s moon Europa is a prime candidate for extraterrestrial habitability in our solar system. The surface landforms of its ice shell express the subsurface structure, dynamics, and exchange governing this potential. Double ridges are the most common surface feature on Europa and occur across every sector of the moon, but their formation is poorly understood, with current hypotheses providing competing and incomplete mechanisms for the development of their distinct morphology. Here we present the discovery and analysis of a double ridge in Northwest Greenland with the same gravity-scaled geometry as those found on Europa. Using surface elevation and radar sounding data, we show that this double ridge was formed by successive refreezing, pressurization, and fracture of a shallow water sill within the ice sheet. If the same process is responsible for Europa’s double ridges, our results suggest that shallow liquid water is spatially and temporally ubiquitous across Europa’s ice shell. 
    more » « less
  3. We study the problem of observation selection in a resource-constrained networked sensing system, where the objective is to select a small subset of observations from a large network to perform a state estimation task. When the measurements are gathered using nonlinear systems, majority of prior work resort to approximation techniques such as linearization of the measurement model to utilize the methods developed for linear models, e.g., (weak) submodular objectives and greedy selection schemes. In contrast, when the measurement model is quadratic, e.g., the range measurements in a radar system, by exploiting a connection to the classical Van Trees' inequality, we derive new optimality criteria without distorting the relational structure of the measurement model. We further show that under certain conditions these optimality criteria are monotone and (weak) submodular set functions. These results enable us to develop an efficient greedy observation selection algorithm uniquely tailored for constrained networked sensing systems following quadratic models and provide theoretical bounds on its achievable utility. Extensive numerical experiments demonstrate efficacy of the proposed framework. 
    more » « less
  4. Abstract Raindrop size distributions (DSD) and rain rate have been estimated from polarimetric radar data using different approaches with the accuracy depending on the errors both in the radar measurements and the estimation methods. Herein, a deep neural network (DNN) technique was utilized to improve the estimation of the DSD and rain rate by mitigating these errors. The performance of this approach was evaluated using measurements from a two-dimensional video disdrometer (2DVD) at the Kessler Atmospheric and Ecological Field Station in Oklahoma as ground truth with the results compared against conventional estimation methods for the period 2006–17. Physical parameters (mass-/volume-weighted diameter and liquid water content), rain rate, and polarimetric radar variables (including radar reflectivity and differential reflectivity) were obtained from the DSD data. Three methods—physics-based inversion, empirical formula, and DNN—were applied to two different temporal domains (instantaneous and rain-event average) with three diverse error assumptions (fitting, measurement, and model errors). The DSD retrievals and rain estimates from 18 cases were evaluated by calculating the bias and root-mean-squared error (RMSE). DNN produced the best performance for most cases, with up to a 5% reduction in RMSE when model errors existed. DSD and rain estimated from a nearby polarimetric radar using the empirical and DNN methods were well correlated with the disdrometer observations; the rain-rate estimate bias of the DNN was significantly reduced (3.3% in DNN vs 50.1% in empirical). These results suggest that DNN has advantages over the physics-based and empirical methods in retrieving rain microphysics from radar observations. 
    more » « less
  5. Abstract A star’s obliquity with respect to its planetary system can provide us with insight into the system’s formation and evolution, as well as hinting at the presence of additional objects in the system. However, M dwarfs, which are the most promising targets for atmospheric follow-up, are underrepresented in terms of obliquity characterization surveys due to the challenges associated with making precise measurements. In this paper, we use the extreme-precision radial velocity (RV) spectrograph MAROON-X to measure the obliquity of the late M dwarf TRAPPIST-1. With the Rossiter–McLaughlin effect, we measure a system obliquity of 2 ° 19 + 17 and a stellar rotational velocity of 2.1 ± 0.3 km s−1. We were unable to detect stellar surface differential rotation, and we found that a model in which all planets share the same obliquity was favored by our data. We were also unable to make a detection of the signatures of the planets using Doppler tomography, which is likely a result of the both the slow rotation of the star and the low signal-to-noise ratio of the data. Overall, TRAPPIST-1 appears to have a low obliquity, which could imply that the system has a low primordial obliquity. It also appears to be a slow rotator, which is consistent with past characterizations of the system and estimates of the star’s rotation period. The MAROON-X data allow for a precise measurement of the stellar obliquity through the Rossiter–McLaughlin effect, highlighting the capabilities of MAROON-X and its ability to make high-precision RV measurements around late, dim stars. 
    more » « less