skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Probing Postmeasurement Entanglement without Postselection
We study the problem of observing quantum collective phenomena emerging from large numbers of measurements. These phenomena are difficult to observe in conventional experiments because, in order to distinguish the effects of measurement from dephasing, it is necessary to postselect on sets of measurement outcomes with Born probabilities that are exponentially small in the number of measurements performed. An unconventional approach, which avoids this exponential “postselection problem”, is to construct cross-correlations between experimental data and the results of simulations on classical computers. However, these cross-correlations generally have no definite relation to physical quantities. We first show how to incorporate classical shadows into this framework, thereby allowing for the construction of quantum information-theoretic cross-correlations. We then identify cross-correlations that both upper and lower bound the measurement-averaged von Neumann entanglement entropy, as well as cross-correlations that lower bound the measurement-averaged purity and entanglement negativity. These bounds show that experiments can be performed to constrain postmeasurement entanglement without the need for postselection. To illustrate our technique, we consider how it could be used to observe the measurement-induced entanglement transition in Haar-random quantum circuits. We use exact numerical calculations as proxies for quantum simulations and, to highlight the fundamental limitations of classical memory, we construct cross-correlations with tensor-network calculations at finite bond dimension. Our results reveal a signature of measurement-induced criticality that can be observed using a quantum simulator in polynomial time and with polynomial classical memory. Published by the American Physical Society2024  more » « less
Award ID(s):
2016245
PAR ID:
10589801
Author(s) / Creator(s):
;
Publisher / Repository:
APS Physical Review Journals
Date Published:
Journal Name:
PRX Quantum
Volume:
5
Issue:
3
ISSN:
2691-3399
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We investigate the collective non-Markovian dynamics of two fully excited two-level atoms coupled to a one-dimensional waveguide in the presence of delay. We demonstrate that analogous to the well-known superfluorescence phenomena, where an inverted atomic ensemble synchronizes to enhance its emission, there is a “subfluorescence” effect that synchronizes the atoms into an entangled dark state depending on the interatomic separation. The phenomenon can lead to a two-photon bound state in the continuum. Our results are pertinent to long-distance quantum networks, presenting a mechanism for spontaneous entanglement generation between distant quantum emitters. Published by the American Physical Society2024 
    more » « less
  2. The gravity from the quantum entanglement of space-time (GQuEST) experiment uses tabletop-scale Michelson laser interferometers to probe for fluctuations in space-time. We present a practicable interferometer design featuring a novel photon-counting readout method that provides unprecedented sensitivity, as it is not subject to the interferometric standard quantum limit. We evaluate the potential of this design to measure space-time fluctuations motivated by recent “geontropic” quantum gravity models. The accelerated accrual of Fisher information offered by the photon-counting readout enables GQuEST to detect the predicted quantum gravity phenomena within measurement times at least 100 times shorter than equivalent conventional interferometers. The GQuEST design, thus, enables a fast and sensitive search for signatures of quantum gravity in a laboratory-scale experiment. Published by the American Physical Society2025 
    more » « less
  3. There is a significant interest in testing quantum entanglement and Bell inequality violation in high-energy experiments. Since the analyses in high-energy experiments are performed with events statistically averaged over phase space, the states used to determine observables depend on the choice of coordinates through an event-dependent basis and are thus not genuine quantum states, but rather “fictitious states.” We find that the basis which diagonalizes the spin-spin correlations is optimal for constructing fictitious states to test the violation of Bell’s inequality. This result is applied directly to the bipartite qubit system of a top and antitop produced at a hadron collider. We show that the beam axis is the optimal basis choice near the t t ¯ threshold production for measuring Bell inequality violation, while at high transverse momentum the basis that aligns along the momentum direction of the top is optimal. Published by the American Physical Society2024 
    more » « less
  4. Topological quantum memory can protect information against local errors up to finite error thresholds. Such thresholds are usually determined based on the success of decoding algorithms rather than the intrinsic properties of the mixed states describing corrupted memories. Here we provide an intrinsic characterization of the breakdown of topological quantum memory, which both gives a bound on the performance of decoding algorithms and provides examples of topologically distinct mixed states. We employ three information-theoretical quantities that can be regarded as generalizations of the diagnostics of ground-state topological order, and serve as a definition for topological order in error-corrupted mixed states. We consider the topological contribution to entanglement negativity and two other metrics based on quantum relative entropy and coherent information. In the concrete example of the two-dimensional (2D) Toric code with local bit-flip and phase errors, we map three quantities to observables in 2D classical spin models and analytically show they all undergo a transition at the same error threshold. This threshold is an upper bound on that achieved in any decoding algorithm and is indeed saturated by that in the optimal decoding algorithm for the Toric code. Published by the American Physical Society2024 
    more » « less
  5. We study the problem of implementing arbitrary permutations of qubits under interaction constraints in quantum systems that allow for arbitrarily fast local operations and classical communication (LOCC). In particular, we show examples of speedups over swap-based and more general unitary routing methods by distributing entanglement and using LOCC to perform quantum teleportation. We further describe an example of an interaction graph for which teleportation gives a logarithmic speedup in the worst-case routing time over swap-based routing. We also study limits on the speedup afforded by quantum teleportation—showing an O ( N log N ) upper bound on the separation in routing time for any interaction graph—and give tighter bounds for some common classes of graphs. Published by the American Physical Society2024 
    more » « less