We study a hinted heterogeneous multi-agent multi-armed bandits problem (HMA2B), where agents can query low-cost observations (hints) in addition to pulling arms. In this framework, each of the M agents has a unique reward distribution over K arms, and in T rounds, they can observe the reward of the arm they pull only if no other agent pulls that arm. The goal is to maximize the total utility by querying the minimal necessary hints without pulling arms, achieving time-independent regret. We study HMA2B in both centralized and decentralized setups. Our main centralized algorithm, GP-HCLA, which is an extension of HCLA, uses a central decision-maker for arm-pulling and hint queries, achieving O(M^4 K) regret with O(M K log T) adaptive hints. In decentralized setups, we propose two algorithms, HD-ETC and EBHD-ETC, that allow agents to choose actions independently through collision-based communication and query hints uniformly until stopping, yielding O(M^3 K^2) regret with O(M^3 K log T) hints, where the former requires knowledge of the minimum gap and the latter does not. Finally, we establish lower bounds to prove the optimality of our results and verify them through numerical simulations. 
                        more » 
                        « less   
                    This content will become publicly available on March 6, 2026
                            
                            Asynchronous Multi-Agent Bandits: Fully Distributed vs . Leader-Coordinated Algorithms
                        
                    
    
            We study the cooperative asynchronous multi-agent multi-armed bandits problem, where each agent's active (arm pulling) decision rounds are asynchronous. That is, in each round, only a subset of agents is active to pull arms, and this subset is unknown and time-varying. We consider two models of multi-agent cooperation, fully distributed and leader-coordinated, and propose algorithms for both models that attain near-optimal regret and communications bounds, both of which are almost as good as their synchronous counterparts. The fully distributed algorithm relies on a novel communication policy consisting of accuracy adaptive and on-demand components, and successive arm elimination for decision-making. For leader-coordinated algorithms, a single leader explores arms and recommends them to other agents (followers) to exploit. As agents' active rounds are unknown, a competent leader must be chosen dynamically. We propose a variant of the Tsallis-INF algorithm with low switches to choose such a leader sequence. Lastly, we report numerical simulations of our new asynchronous algorithms with other known baselines. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2325956
- PAR ID:
- 10591421
- Publisher / Repository:
- ACM
- Date Published:
- Journal Name:
- Proceedings of the ACM on Measurement and Analysis of Computing Systems
- Volume:
- 9
- Issue:
- 1
- ISSN:
- 2476-1249
- Page Range / eLocation ID:
- 1 to 39
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            We propose and evaluate a learning-based framework to address multi-agent resource allocation in coupled wireless systems. In particular we consider, multiple agents (e.g., base stations, access points, etc.) that choose amongst a set of resource allocation options towards achieving their own performance objective /requirements, and where the performance observed at each agent is further coupled with the actions chosen by the other agents, e.g., through interference, channel leakage, etc. The challenge is to find the best collective action. To that end we propose a Multi-Armed Bandit (MAB) framework wherein the best actions (aka arms) are adaptively learned through online reward feedback. Our focus is on systems which are "weakly-coupled" wherein the best arm of each agent is invariant to others' arm selection the majority of the time - this majority structure enables one to develop light weight efficient algorithms. This structure is commonly found in many wireless settings such as channel selection and power control. We develop a bandit algorithm based on the Track-and-Stop strategy, which shows a logarithmic regret with respect to a genie. Finally through simulation, we exhibit the potential use of our model and algorithm in several wireless application scenarios.more » « less
- 
            We study the multi-agent multi-armed bandit (MAMAB) problem, where agents are factored into overlapping groups. Each group represents a hyperedge, forming a hypergraph over the agents. At each round of interaction, the learner pulls a joint arm (composed of individual arms for each agent) and receives a reward according to the hypergraph structure. Specifically, we assume there is a local reward for each hyperedge, and the reward of the joint arm is the sum of these local rewards. Previous work introduced the multi-agent Thompson sampling (MATS) algorithm and derived a Bayesian regret bound. However, it remains an open problem how to derive a frequentist regret bound for Thompson sampling in this multi-agent setting. To address these issues, we propose an efficient variant of MATS, the epsilon-exploring Multi-Agent Thompson Sampling (eps-MATS) algorithm, which performs MATS exploration with probability epsilon while adopts a greedy policy otherwise. We prove that eps-MATS achieves a worst-case frequentist regret bound that is sublinear in both the time horizon and the local arm size. We also derive a lower bound for this setting, which implies our frequentist regret upper bound is optimal up to constant and logarithm terms, when the hypergraph is sufficiently sparse. Thorough experiments on standard MAMAB problems demonstrate the superior performance and the improved computational efficiency of eps-MATS compared with existing algorithms in the same setting.more » « less
- 
            We study the multi-agent multi-armed bandit (MAMAB) problem, where agents are factored into overlapping groups. Each group represents a hyperedge, forming a hypergraph over the agents. At each round of interaction, the learner pulls a joint arm (composed of individual arms for each agent) and receives a reward according to the hypergraph structure. Specifically, we assume there is a local reward for each hyperedge, and the reward of the joint arm is the sum of these local rewards. Previous work introduced the multi-agent Thompson sampling (MATS) algorithm and derived a Bayesian regret bound. However, it remains an open problem how to derive a frequentist regret bound for Thompson sampling in this multi-agent setting. To address these issues, we propose an efficient variant of MATS, the epsilon-exploring Multi-Agent Thompson Sampling (eps-MATS) algorithm, which performs MATS exploration with probability epsilon while adopts a greedy policy otherwise. We prove that eps-MATS achieves a worst-case frequentist regret bound that is sublinear in both the time horizon and the local arm size. We also derive a lower bound for this setting, which implies our frequentist regret upper bound is optimal up to constant and logarithm terms, when the hypergraph is sufficiently sparse. Thorough experiments on standard MAMAB problems demonstrate the superior performance and the improved computational efficiency of eps-MATS compared with existing algorithms in the same setting.more » « less
- 
            We propose a novel formulation of group fairness with biased feedback in the contextual multi-armed bandit (CMAB) setting. In the CMAB setting, a sequential decision maker must, at each time step, choose an arm to pull from a finite set of arms after observing some context for each of the potential arm pulls. In our model, arms are partitioned into two or more sensitive groups based on some protected feature(s) (e.g., age, race, or socio-economic status). Initial rewards received from pulling an arm may be distorted due to some unknown societal or measurement bias. We assume that in reality these groups are equal despite the biased feedback received by the agent. To alleviate this, we learn a societal bias term which can be used to both find the source of bias and to potentially fix the problem outside of the algorithm. We provide a novel algorithm that can accommodate this notion of fairness for an arbitrary number of groups, and provide a theoretical bound on the regret for our algorithm. We validate our algorithm using synthetic data and two real-world datasets for intervention settings wherein we want to allocate resources fairly across groups.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
