skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Polyhedral approximation and uniformization for non-length surfaces
We prove that any metric surface (that is, metric space homeomorphic to a 2-manifold with boundary) with locally finite Hausdorff 2-measure is the Gromov–Hausdorff limit of polyhedral surfaces with controlled geometry. We use this result, together with the classical uniformization theorem, to prove that any metric surface homeomorphic to the 2-sphere with finite Hausdorff 2-measure admits a weakly quasiconformal parametrization by the Riemann sphere, answering a question of Rajala–Wenger. These results have been previously established by the authors under the assumption that the metric surface carries a length metric. As a corollary, we obtain new proofs of the uniformization theorems of Bonk–Kleiner for quasispheres and of Rajala for reciprocal surfaces. Another corollary is a simplification of the definition of a reciprocal surface, which answers a question of Rajala concerning minimal hypotheses under which a metric surface is quasiconformally equivalent to a Euclidean domain.  more » « less
Award ID(s):
2246485
PAR ID:
10591563
Author(s) / Creator(s):
;
Publisher / Repository:
EMS Publishing House
Date Published:
Journal Name:
Journal of the European Mathematical Society
ISSN:
1435-9855
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract This paper studies the structure and stability of boundaries in noncollapsed $${{\,\mathrm{RCD}\,}}(K,N)$$ RCD ( K , N ) spaces, that is, metric-measure spaces $$(X,{\mathsf {d}},{\mathscr {H}}^N)$$ ( X , d , H N ) with Ricci curvature bounded below. Our main structural result is that the boundary $$\partial X$$ ∂ X is homeomorphic to a manifold away from a set of codimension 2, and is $$N-1$$ N - 1 rectifiable. Along the way, we show effective measure bounds on the boundary and its tubular neighborhoods. These results are new even for Gromov–Hausdorff limits $$(M_i^N,{\mathsf {d}}_{g_i},p_i) \rightarrow (X,{\mathsf {d}},p)$$ ( M i N , d g i , p i ) → ( X , d , p ) of smooth manifolds with boundary, and require new techniques beyond those needed to prove the analogous statements for the regular set, in particular when it comes to the manifold structure of the boundary $$\partial X$$ ∂ X . The key local result is an $$\varepsilon $$ ε -regularity theorem, which tells us that if a ball $$B_{2}(p)\subset X$$ B 2 ( p ) ⊂ X is sufficiently close to a half space $$B_{2}(0)\subset {\mathbb {R}}^N_+$$ B 2 ( 0 ) ⊂ R + N in the Gromov–Hausdorff sense, then $$B_1(p)$$ B 1 ( p ) is biHölder to an open set of $${\mathbb {R}}^N_+$$ R + N . In particular, $$\partial X$$ ∂ X is itself homeomorphic to $$B_1(0^{N-1})$$ B 1 ( 0 N - 1 ) near $$B_1(p)$$ B 1 ( p ) . Further, the boundary $$\partial X$$ ∂ X is $$N-1$$ N - 1 rectifiable and the boundary measure "Equation missing" is Ahlfors regular on $$B_1(p)$$ B 1 ( p ) with volume close to the Euclidean volume. Our second collection of results involve the stability of the boundary with respect to noncollapsed mGH convergence $$X_i\rightarrow X$$ X i → X . Specifically, we show a boundary volume convergence which tells us that the $$N-1$$ N - 1 Hausdorff measures on the boundaries converge "Equation missing" to the limit Hausdorff measure on $$\partial X$$ ∂ X . We will see that a consequence of this is that if the $$X_i$$ X i are boundary free then so is X . 
    more » « less
  2. We prove two new results on the K K -polystability of Q \mathbb {Q} -Fano varieties based on purely algebro-geometric arguments. The first one says that any K K -semistable log Fano cone has a special degeneration to a uniquely determined K K -polystable log Fano cone. As a corollary, we combine it with the differential-geometric results to complete the proof of Donaldson-Sun’s conjecture which says that the metric tangent cone of any point appearing on a Gromov-Hausdorff limit of Kähler-Einstein Fano manifolds depends only on the algebraic structure of the singularity. The second result says that for any log Fano variety with the torus action, K K -polystability is equivalent to equivariant K K -polystability, that is, to check K K -polystability, it is sufficient to check special test configurations which are equivariant under the torus action. 
    more » « less
  3. Abstract Putman and Wieland conjectured that if is a finite branched cover between closed oriented surfaces of sufficiently high genus, then the orbits of all nonzero elements of under the action of lifts to of mapping classes on are infinite. We prove that this holds if is generated by the homology classes of lifts of simple closed curves on . We also prove that the subspace of spanned by such lifts is a symplectic subspace. Finally, simple closed curves lie on subsurfaces homeomorphic to 2‐holed spheres, and we prove that is generated by the homology classes of lifts of loops on lying on subsurfaces homeomorphic to 3‐holed spheres. 
    more » « less
  4. null (Ed.)
    Abstract The uniformization and hyperbolization transformations formulated by Bonk et al. in “Uniformizing Gromov Hyperbolic Spaces” , Astérisque, vol 270 (2001), dealt with geometric properties of metric spaces. In this paper we consider metric measure spaces and construct a parallel transformation of measures under the uniformization and hyperbolization procedures. We show that if a locally compact roughly starlike Gromov hyperbolic space is equipped with a measure that is uniformly locally doubling and supports a uniformly local p -Poincaré inequality, then the transformed measure is globally doubling and supports a global p -Poincaré inequality on the corresponding uniformized space. In the opposite direction, we show that such global properties on bounded locally compact uniform spaces yield similar uniformly local properties for the transformed measures on the corresponding hyperbolized spaces. We use the above results on uniformization of measures to characterize when a Gromov hyperbolic space, equipped with a uniformly locally doubling measure supporting a uniformly local p -Poincaré inequality, carries nonconstant globally defined p -harmonic functions with finite p -energy. We also study some geometric properties of Gromov hyperbolic and uniform spaces. While the Cartesian product of two Gromov hyperbolic spaces need not be Gromov hyperbolic, we construct an indirect product of such spaces that does result in a Gromov hyperbolic space. This is done by first showing that the Cartesian product of two bounded uniform domains is a uniform domain. 
    more » « less
  5. A spherical conical metric g g on a surface Σ \Sigma is a metric of constant curvature 1 1 with finitely many isolated conical singularities. The uniformization problem for such metrics remains largely open when at least one of the cone angles exceeds 2 π 2\pi . The eigenfunctions of the Friedrichs Laplacian Δ g \Delta _g with eigenvalue λ = 2 \lambda =2 play a special role in this problem, as they represent local obstructions to deformations of the metric g g in the class of spherical conical metrics. In the present paper we apply the theory of multivalued harmonic maps to spheres to the question of existence of such eigenfunctions. In the first part we establish a new criterion for the existence of 2 2 -eigenfunctions, given in terms of a certain meromorphic data on Σ \Sigma . As an application we give a description of all 2 2 -eigenfunctions for metrics on the sphere with at most three conical singularities. The second part is an algebraic construction of metrics with large number of 2 2 -eigenfunctions via the deformation of multivalued harmonic maps. We provide new explicit examples of metrics with many 2 2 -eigenfunctions via both approaches, and describe the general algorithm to find metrics with arbitrarily large number of 2 2 -eigenfunctions. 
    more » « less