Magnetic fields influence ion transport in plasmas. Straightforward comparisons of experimental measurements with plasma theories are complicated when the plasma is inhomogeneous, far from equilibrium, or characterized by strong gradients. To better understand ion transport in a partially magnetized system, we study the hydrodynamic velocity and temperature evolution in an ultracold neutral plasma at intermediate values of the magnetic field. We observe a transverse, radial breathing mode that does not couple to the longitudinal velocity. The inhomogeneous density distribution gives rise to a shear velocity gradient that appears to be only weakly damped. This mode is excited by ion oscillations originating in the wings of the distribution where the plasma becomes non-neutral. The ion temperature shows evidence of an enhanced electron-ion collision rate in the presence of the magnetic field. Ultracold neutral plasmas provide a rich system for studying mode excitation and decay.
more »
« less
Wave steepening and shock formation in ultracold neutral plasmas
We present observations of wave steepening and signatures of shock formation during expansion of ultracold neutral plasmas formed with an initial density distribution that is centrally peaked and decays exponentially with distance. The plasma acceleration and velocity decrease at large distance from the plasma center, leading to central ions overtaking ions in the outer regions and the development of a steepening front that is narrow compared to the size of the plasma. The density and velocity change dramatically across the front, and significant heating of the ions is observed in the region of steepest gradients. For a reasonable estimate of electron temperature, the relative velocity of ions on either side of the front modestly exceeds the local sound speed (Mach number M≳1). This indicates that by sculpting steep density gradients, it is possible to create the conditions for shock formation, or very close to it, opening a new avenue of research for ultracold neutral plasmas.
more »
« less
- Award ID(s):
- 2107709
- PAR ID:
- 10591915
- Publisher / Repository:
- American Institute of Physics
- Date Published:
- Journal Name:
- Physics of Plasmas
- Volume:
- 31
- Issue:
- 11
- ISSN:
- 1070-664X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Understanding how plasmas thermalize when density gradients are steep remains a fundamental challenge in plasma physics, with direct implications for fusion experiments and astrophysical phenomena. Standard hydrodynamic models break down in these regimes, and kinetic theories make predictions that have never been directly tested. Here, we present the first detailed phase-space measurements of a strongly coupled plasma as it evolves from sharp density gradients to thermal equilibrium. Using laser-induced fluorescence imaging of an ultracold calcium plasma, we track the complete ion distribution function f(x,v,t). We discover that commonly used kinetic models (Bhatnagar–Gross–Krook and Lenard–Bernstein) overpredict thermalization rates, even while correctly capturing the initial counterstreaming plasma formation. Our measurements reveal that the initial ion acceleration response scales linearly with electron temperature, and that the simulations underpredict the initial ion response. In our geometry we demonstrate the formation of well-controlled counterpropagating plasma beams. This experimental platform enables precision tests of kinetic theories and opens new possibilities for studying plasma stopping power and flow-induced instabilities in strongly coupled systems.more » « less
-
We report the characteristics of collisional plasma shocks formed during interactions between low density (ne≈1015 cm−3), low temperature (Te≈2 eV), high velocity (30 km s−1), plasma jets and stagnant plasma of similar parameters. This investigation seeks to probe the structure of shocks in multi-ion-species plasmas, in particular, the presence of gradient-driven ion species separation at the shock front. The railgun-accelerated jets utilized here have previously been shown to exist in a collisional regime with intra-jet collisional mean-free-path substantially smaller than jet size [Schneider et al., Plasma Sources Sci. Technol. 29, 045013 (2020)]. To induce collisions, a dielectric barrier is located downstream of the railgun to stagnate an initially supersonic plasma jet. Around the time of stagnation, the railgun emits a second jet which shortly collides with the stagnant plasma. The presence of a structure emitting in the UV-visible band is evident in high-speed photographs of the moments immediately following the arrival of the second jet at the stagnant plasma. Analysis of interferometric and spectroscopic data suggests that the observed increase in density from the jet to the post-collision plasma is consistent with the formation of a bow shock structure with a multi-millimeter-scale ion shock layer.more » « less
-
Abstract The upstream and downstream plasmas of 109 strong‐compression forward interplanetary shocks are statistically analyzed using 3‐s measurements from the WIND spacecraft. The goal is a comparison of the fluctuation properties of downstream plasmas in comparison with the fluctuation properties of upstream plasmas in the inertial range of frequencies and the magnetic‐structure range of spatial scales. The shocks all have density compression rations of ~2 or more. When possible, each shock is categorized according to the type of solar wind plasma it propagates through: 15 shocks are in coronal‐hole‐origin plasma, 42 shocks are in streamer‐belt‐origin plasma, 36 shocks are in sector‐reversal‐region plasmas, and 11 shocks are in ejecta plasma. The statistical study examines magnetic field and velocity spectral indices, the Alfvénicity, the fluctuation amplitudes, Alfvén ratios, the degree of plasma inhomogeneity, and Taylor microscales, looking in particular at (1) fluctuation values downstream that are related to fluctuation values upstream and (2) systematic differences in fluctuation values associated with the type of plasma. It is argued that inhomogeneity of the downstream plasma can be caused by spatial variations in the shock normal angleθBncaused by field direction variations in the upstream magnetic structure. The importance of determining the type of plasma that the shock propagates through is established.more » « less
-
Abstract Non-equilibrium inductively coupled plasmas (ICPs) operating in hydrogen are of significant interest for applications including large-area materials processing. Increasing control of spatial gas heating, which drives the formation of neutral species density gradients and the rate of gas-temperature-dependent reactions, is critical. In this study, we use 2D fluid-kinetic simulations with the Hybrid Plasma Equipment Model to investigate the spatially resolved production of atomic hydrogen in a low-pressure planar ICP operating in pure hydrogen (10–20 Pa or 0.075–0.15 Torr, 300 W). The reaction set incorporates self-consistent calculation of the spatially resolved gas temperature and 14 vibrationally excited states. We find that the formation of neutral-gas density gradients, which result from spatially non-uniform electrical power deposition at constant pressure, can drive significant variations in the vibrational distribution function and density of atomic hydrogen when gas heating is spatially resolved. This highlights the significance of spatial gas heating on the production of reactive species in relatively high-power-density plasma processing sources.more » « less
An official website of the United States government
