SUMMARY We present a new compilation and analysis of broad-band ocean bottom seismometer noise properties from 15 yr of seismic deployments. We compile a comprehensive data set of representative four-component (seismometer and pressure gauge) noise spectra and cross-spectral properties (coherence, phase and admittance) for 551 unique stations spanning 18 U.S.-led experiments. This is matched with a comprehensive compilation of metadata parameters related to instrumentation and environmental properties for each station. We systematically investigate the similarity of noise spectra by grouping them according to these metadata parameters to determine which factors are the most important in determining noise characteristics. We find evidence for improvements in similarity of noise properties when grouped across parameters, with groupings by seismometer type and deployment water depth yielding the most significant and interpretable results. Instrument design, that is the entire deployed package, also plays an important role, although it strongly covaries with seismometer and water depth. We assess the presence of traditional sources of tilt, compliance, and microseismic noise to characterize their relative role across a variety of commonly used seismic frequency bands. We find that the presence of tilt noise is primarily dependent on the type of seismometer used (covariant with a particular subset of instrument design), that compliance noise follows anticipated relationships with water depth, and that shallow, oceanic shelf environments have systematically different microseism noise properties (which are, in turn, different from instruments deployed in shallow lake environments). These observations have important implications for the viability of commonly used seismic analysis techniques. Finally, we compare spectra and coherences before and after vertical channel tilt and compliance noise removal to evaluate the efficacy and limitations of these now standard processing techniques. These findings may assist in future experiment planning and instrument development, and our newly compiled noise data set serves as a building block for more targeted future investigations by the marine seismology community. 
                        more » 
                        « less   
                    This content will become publicly available on January 27, 2026
                            
                            Functional regression for SERS spectrum transformation across diverse instruments
                        
                    
    
            A SERS instrument transformation framework based on the penalized functional regression model (SpectraFRM) is proposed for cross-instrument mapping with subsequent machine learning classification to compare transformed spectra with standard spectra. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10592423
- Publisher / Repository:
- The Royal Society of Chemistry
- Date Published:
- Journal Name:
- The Analyst
- Volume:
- 150
- Issue:
- 3
- ISSN:
- 0003-2654
- Page Range / eLocation ID:
- 460 to 469
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Vortex fiber nulling (VFN) is a technique for detecting and characterizing faint companions at small separations from their host star. A near-infrared (∼2.3μm) VFN demonstrator mode was deployed on the Keck Planet Imager and Characterizer (KPIC) instrument at the Keck Observatory and presented earlier. In this Letter, we present the first VFN companion detections. Three targets, HIP 21543 Ab, HIP 94666 Ab, and HIP 50319 B, were detected with host–companion flux ratios between 70 and 430 at and within one diffraction beamwidth (λ/D). We complement the spectra from KPIC VFN with flux ratio and position measurements from the CHARA Array to validate the VFN results and provide a more complete characterization of the targets. This Letter reports the first direct detection of these three M dwarf companions, yielding their first spectra and flux ratios. Our observations provide measurements of bulk properties such as effective temperatures, radial velocities, and , and verify the accuracy of the published orbits. These detections corroborate earlier predictions of the KPIC VFN performance, demonstrating that the instrument mode is ready for science observations.more » « less
- 
            Evans, Christopher J.; Bryant, Julia J.; Motohara, Kentaro (Ed.)We present the design of a novel instrument tuned to detect transiting exoplanet atmospheres. The instrument, which we call the exoplanet transmission spectroscopy imager (ETSI), makes use of a new technique called common-path multi-band imaging (CMI). ETSI uses a prism and multi-band lter to simultaneously image 15 spectral bandpasses on two detectors from 430  975nm (with a average spectral resolution of R = = = 23) during exoplanet transits of a bright star. A prototype of the instrument achieved photon-noise limited results which were below the atmospheric amplitude scintillation noise limit. ETSI can detect the presence and composition of an exoplanet atmosphere in a relatively short time on a modest-size telescope. We show the optical design of the instrument. Further, we discuss design trades of the prism and multi-band lter which are driven by the science of the ETSI instrument. We describe the upcoming survey with ETSI that will measure dozens of exoplanet atmosphere spectra in 2 years on a two meter telescope. Finally, we will discuss how ETSI will be a powerful means for follow up on all gas giant exoplanets that transit bright stars, including a multitude of recently identi ed TESS (NASA's Transiting Exoplanet Survey Satellite) exoplanets.more » « less
- 
            A continuous wave, homodyne, low frequency electron paramagnetic resonance spectrometer is described which can accommodate 15 cm diameter objects. The spectrometer can utilize small volume and surface coil probes operating between 100 and 500 MHz. The magnetic field can be scanned between 0 and 35 mT and is thus suitable for g < 2 spins and wide absorption lines. The spectrometer can record conventional field swept, field cycled, and spatially resolved spectra. Details of the instrument design and representative spectra from six different samples are presented. This design has applications to study objects with cultural heritage significance.more » « less
- 
            This record contains the data of spectra and photometry used for the paper A shock flash breaking out of a dusty red supergiant [MJD]_[Band]_[Instrument]_[stacked number x exposure time of a single image].fits - Images of SN2023ixf after reduction code.zip - Code to fit the hybrid modelmore » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
