We derive an exact solution for the steady state of a setup where two -coupled -qubit spin chains (with possibly nonuniform couplings) are subject to boundary Rabi drives and common boundary loss generated by a waveguide (either bidirectional or unidirectional). For a wide range of parameters, this system has a pure entangled steady state, providing a means for stabilizing remote multiqubit entanglement without the use of squeezed light. Our solution also provides insights into a single boundary-driven dissipative spin chain that maps to an interacting fermionic model. The nonequilibrium steady state exhibits surprising correlation effects, including an emergent pairing of hole excitations that arises from dynamically constrained hopping. Our system could be implemented in a number of experimental platforms, including circuit QED. Published by the American Physical Society2024
more »
« less
Loss resilience of driven-dissipative remote entanglement in chiral waveguide quantum electrodynamics
Establishing limits of entanglement in open quantum systems is a problem of fundamental interest, with strong implications for applications in quantum information science. Here, we study the limits of entanglement stabilization between remote qubits. We theoretically investigate the loss resilience of driven-dissipative entanglement between remote qubits coupled to a chiral waveguide. We find that by coupling a pair of storage qubits to the two driven qubits, the steady state can be tailored such that the storage qubits show a degree of entanglement that is higher than what can be achieved with only two driven qubits coupled to the waveguide. By reducing the degree of entanglement of the driven qubits, we show that the entanglement between the storage qubits becomes more resilient to waveguide loss. Our analytical and numerical results offer insights into how waveguide loss limits the degree of entanglement in this driven-dissipative system, and they offer important guidance for remote entanglement stabilization in the laboratory, for example using superconducting circuits. Published by the American Physical Society2024
more »
« less
- Award ID(s):
- 2016136
- PAR ID:
- 10592535
- Publisher / Repository:
- APS
- Date Published:
- Journal Name:
- Physical Review Research
- Volume:
- 6
- Issue:
- 3
- ISSN:
- 2643-1564
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We investigate the collective non-Markovian dynamics of two fully excited two-level atoms coupled to a one-dimensional waveguide in the presence of delay. We demonstrate that analogous to the well-known superfluorescence phenomena, where an inverted atomic ensemble synchronizes to enhance its emission, there is a “subfluorescence” effect that synchronizes the atoms into an entangled dark state depending on the interatomic separation. The phenomenon can lead to a two-photon bound state in the continuum. Our results are pertinent to long-distance quantum networks, presenting a mechanism for spontaneous entanglement generation between distant quantum emitters. Published by the American Physical Society2024more » « less
-
Nonreciprocal microwave routing plays a crucial role in measuring quantum circuits, and allows for realizing cascaded quantum systems for generating and stabilizing entanglement between noninteracting qubits. The most commonly used tools for implementing directionality are ferrite-based circulators. These devices are versatile, but suffer from excess loss, a large footprint, and fixed directionality. For utilizing nonreciprocity in scalable quantum circuits it is desirable to develop efficient integration of low-loss and controllable directional elements. Here, we report the design and experimental realization of a minimal controllable directional interface that can be directly coupled to superconducting qubits. In the device presented, nonreciprocity is realized through a combination of interference and phase-controlled parametric pumping. We have achieved a maximum directionality of around 30 dB, and the performance of the device is predicted quantitatively from independent calibration measurements. Using the excellent agreement of model and experiment, we predict that the circuit will be useable as a chiral qubit interface with inefficiencies at the level or below. Our work offers a promising route for realizing high-fidelity signal routing and entanglement generation in all-to-all connected microwave quantum networks, and provides a path for isolator-free qubit readout schemes. Published by the American Physical Society2024more » « less
-
Realistic quantum systems are affected by environmental loss, which is often seen as detrimental for applications in quantum technologies. Alternatively, weak coupling to an environment can aid in stabilizing highly entangled and mixed states, but determining optimal system-environment parameters can be challenging. Here, we describe a technique to optimize parameters for generating desired nonequilibrium steady states (NESSs) in driven-dissipative quantum systems governed by the Lindblad equation. We apply this approach to predict highly entangled and mixed NESSs in Ising, Kitaev, and Dicke models in several quantum phases. Published by the American Physical Society2025more » « less
-
We study the problem of implementing arbitrary permutations of qubits under interaction constraints in quantum systems that allow for arbitrarily fast local operations and classical communication (LOCC). In particular, we show examples of speedups over swap-based and more general unitary routing methods by distributing entanglement and using LOCC to perform quantum teleportation. We further describe an example of an interaction graph for which teleportation gives a logarithmic speedup in the worst-case routing time over swap-based routing. We also study limits on the speedup afforded by quantum teleportation—showing an upper bound on the separation in routing time for any interaction graph—and give tighter bounds for some common classes of graphs. Published by the American Physical Society2024more » « less
An official website of the United States government

