The precise control of direct current (dc) magnetic fields is crucial in a wide range of experimental platforms, from ultracold quantum gases and nuclear magnetic resonance to precision measurements. In each of these cases, the Zeeman effect causes quantum states to shift in energy as a function of the magnetic field. The development of low-noise current sources is essential because electromagnets are the preferred tool to dynamically control the magnetic field. Here, we describe an ultra-low noise bipolar current source using pairs of complementary n- and p-channel metal–oxide–semiconductor field-effect transistors controlled by zero-drift operational amplifiers. Our source has a 90 kHz inherent bandwidth and provides current from −20 to 20 A with noise (0.1 Hz to 100 kHz) of 140 µA at ±20 A.
more »
« less
Cryogenic probe for low-noise, high-frequency electronic measurements
The design and performance of a low-noise, modular cryogenic probe, which is applicable to a wide range of measurements over a broad range of working frequencies, temperatures, and magnetic fields, is presented. The design of the probe facilitates the exchange of sample holders and sample-stage amplifiers, which, combined with its characteristic low transmission and reflection loss, make this design suitable for high precision or low sensitivity measurements. The specific example of measuring the shot noise of magnetic tunnel junctions is discussed. We highlight various design characteristics chosen specifically to expand the applicability of the probe to measurement techniques such as nuclear magnetic resonance.
more »
« less
- Award ID(s):
- 1936221
- PAR ID:
- 10592704
- Publisher / Repository:
- American Institute of Physics
- Date Published:
- Journal Name:
- Review of Scientific Instruments
- Volume:
- 93
- Issue:
- 10
- ISSN:
- 0034-6748
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The QCD axion is a particle postulated to exist since the 1970s to explain the strong-CP problem in particle physics. It could also account for all of the observed dark matter in the Universe. The axion resonant interaction detection experiment (ARIADNE) intends to detect the QCD axion by sensing the fictitious ‘magnetic field’ created by its coupling to spin. Short-range axion-mediated interactions can occur between a sample of laser-polarized3He nuclear spins and an unpolarized source-mass sprocket. The experiment must be sensitive to magnetic fields below the 10−19T level to achieve its design sensitivity, necessitating tight control of the experiment’s magnetic environment. We describe a method for controlling three aspects of that environment which would otherwise limit the experimental sensitivity. Firstly, a system of superconducting magnetic shielding is described to screen ordinary magnetic noise from the sample volume at the 108level, which should be sufficient to reduce the contribution of Johnson noise in the sprocket-shaped source mass, expected to be at the 10−12T level, to below the threshold for signal detection. Secondly, a method for reducing magnetic field gradients within the sample up to 102times is described, using a simple and cost-effective design geometry. Thirdly, a novel coil design is introduced which allows the generation of fields similar to those produced by Helmholtz coils in regions directly abutting superconducting boundaries. This method allows the nuclear Larmor frequency of the sample to be tuned to match the axion field modulation frequency set by the sprocket rotation. Finally, we experimentally investigate the magnetic shielding factor of sputtered thin-film superconducting niobium on quartz substrates for various geometries and film thicknesses relevant for the ARIADNE axion experiment using SQUID magnetometry. The methods may be generally useful for magnetic field control near superconducting boundaries in other experiments where similar considerations apply.more » « less
-
Abstract Recent advances in magnetic microscopy have enabled studies of geological samples whose weak and spatially nonuniform magnetizations were previously inaccessible to standard magnetometry techniques. A quantity of central importance is the net magnetic moment, which reflects the mean direction and the intensity of the magnetization states of numerous ferromagnetic crystals within a certain volume. The planar arrangement of typical magnetic microscopy measurements, which originates from measuring the field immediately above the polished surface of a sample to maximize sensitivity and spatial resolution, makes estimating net moments considerably more challenging than with spherically distributed data. In particular, spatially extended and nonuniform magnetization distributions often cannot be adequately approximated by a single magnetic dipole. To address this limitation, we developed a multipole fitting technique that can accurately estimate net moment using spherical harmonic multipole expansions computed from planar data. Given that the optimal location for the origin of such expansions is unknown beforehand and generally unconstrained, regularization of this inverse problem is critical for obtaining accurate moment estimates from noisy experimental magnetic data. We characterized the performance of the technique using synthetic sources under different conditions (noiseless data, data corrupted with simulated white noise, and data corrupted with measured instrument noise). We then validated and demonstrated the technique using superconducting quantum interference device microscopy measurements of impact melt spherules from Lonar crater, India and dusty olivine chondrules from the CO chondrite meteorite Dominion Range 08006.more » « less
-
A spatial heterodyne Raman spectrometer (SHRS), constructed using a modular optical cage and lens tube system, is described for use with a commercial silica and a custom single-crystal (SC) sapphire fiber Raman probe. The utility of these fiber-coupled SHRS chemical sensors is demonstrated using 532 nm laser excitation for acquiring Raman measurements of solid (sulfur) and liquid (cyclohexane) Raman standards as well as real-world, plastic-bonded explosives (PBX) comprising 1,3,5- triamino- 2,4,6- trinitrobenzene (TATB) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) energetic materials. The SHRS is a fixed grating-based dispersive interferometer equipped with an array detector. Each Raman spectrum was extracted from its corresponding fringe image (i.e., interferogram) using a Fourier transform method. Raman measurements were acquired with the SHRS Littrow wavelength set at the laser excitation wavelength over a spectral range of ∼1750 cm−1with a spectral resolution of ∼8 cm−1for sapphire and ∼10 cm−1for silica fiber probes. The large aperture of the SHRS allows much larger fiber diameters to be used without degrading spectral resolution as demonstrated with the larger sapphire collection fiber diameter (330 μm) compared to the silica fiber (100 μm). Unlike the dual silica fiber Raman probe, the dual sapphire fiber Raman probe did not include filtering at the fiber probe tip nearest the sample. Even so, SC sapphire fiber probe measurements produced less background than silica fibers allowing Raman measurements as close as ∼85 cm−1to the excitation laser. Despite the short lengths of sapphire fiber used to construct the sapphire probe, well-defined, sharp sapphire Raman bands at 420, 580, and 750 cm−1were observed in the SHRS spectra of cyclohexane and the highly fluorescent HMX-based PBX. SHRS measurements of the latter produced low background interference in the extracted Raman spectrum because the broad band fluorescence (i.e., a direct current, or DC, component) does not contribute to the interferogram intensity (i.e., the alternating current, or AC, component). SHRS spectral resolution, throughput, and signal-to-noise ratio are also discussed along with the merits of using sapphire Raman bands as internal performance references and as internal wavelength calibration standards in Raman measurements.more » « less
-
Although similar to more commonly implemented single wavelength approaches, broadband pump‐probe or transient absorption microscopy presents unique experimental challenges due to the simultaneous requirements of a broadband probe pulse and a small sample volume. Here we provide an in‐depth analysis of broadband detection schemes and their common noise sources to provide strategies for balancing the conflicting needs of high sensitivity and low probe fluence. We show that broadband pump‐probe microscopy is atypically sensitive to laser shot noise and therefore, low pump on/off modulation frequencies, on the order of 100 s of Hz to a few kHz, are essential to measure small (~10^-3 - 10^-4) amplitude transient spectra while remaining in the perturbative limit.more » « less
An official website of the United States government
