skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A 20 A bipolar current source with 140 μ A noise over 100 kHz bandwidth
The precise control of direct current (dc) magnetic fields is crucial in a wide range of experimental platforms, from ultracold quantum gases and nuclear magnetic resonance to precision measurements. In each of these cases, the Zeeman effect causes quantum states to shift in energy as a function of the magnetic field. The development of low-noise current sources is essential because electromagnets are the preferred tool to dynamically control the magnetic field. Here, we describe an ultra-low noise bipolar current source using pairs of complementary n- and p-channel metal–oxide–semiconductor field-effect transistors controlled by zero-drift operational amplifiers. Our source has a 90 kHz inherent bandwidth and provides current from −20 to 20 A with noise (0.1 Hz to 100 kHz) of 140 µA at ±20 A.  more » « less
Award ID(s):
2120757
PAR ID:
10597469
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
AIP Advances
Volume:
13
Issue:
6
ISSN:
2158-3226
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Quantum sensors based on solid-state defects, in particular nitrogen-vacancy (NV) centers in diamond, enable precise measurement of magnetic fields, temperature, rotation, and electric fields. Cavity quantum electrodynamic (cQED) readout, in which an NV ensemble is hybridized with a microwave mode, can overcome limitations in optical spin detection and has resulted in leading magnetic sensitivities at the pT-level. This approach, however, remains far from the intrinsic spin-projection noise limit due to thermal Johnson-Nyquist noise and spin saturation effects. Here we tackle these challenges by combining recently demonstrated spin refrigeration techniques with comprehensive nonlinear modeling of the cQED sensor operation. We demonstrate that the optically-polarized NV ensemble simultaneously provides magnetic sensitivity and acts as a heat sink for the deleterious thermal microwave noise background, even when actively probed by a microwave field. Optimizing the NV-cQED system, we demonstrate a broadband sensitivity of 576 ± 6 fT/$$\sqrt{{{{\rm{Hz}}}}}$$ Hz around 15 kHz in ambient conditions. We then discuss the implications of this approach for the design of future magnetometers, including near-projection-limited devices approaching 3 fT/$$\sqrt{{{{\rm{Hz}}}}}$$ Hz sensitivity enabled by spin refrigeration. 
    more » « less
  2. Direct write patterning of high-transition temperature (high-TC) superconducting oxide thin films with a focused helium ion beam is a formidable approach for the scaling of high-TC circuit feature sizes down to the nanoscale. In this letter, we report using this technique to create a sensitive micro superconducting quantum interference device (SQUID) magnetometer with a sensing area of about 100 × 100 μm2. The device is fabricated from a single 35-nm thick YBa2Cu3O7−δ film. A flux concentrating pick-up loop is directly coupled to a 10 nm × 20 μm nano-slit SQUID. The SQUID is defined entirely by helium ion irradiation from a gas field ion source. The irradiation converts the superconductor to an insulator, and no material is milled away or etched. In this manner, a very narrow non-superconducting nano-slit is created entirely within the plane of the film. The narrow slit dimension allows for maximization of the coupling to the field concentrator. Electrical measurements reveal a large 0.35 mV modulation with a magnetic field. We measure a white noise level of 2 μΦ0/Hz1∕2. The field noise of the magnetometer is 4 pT/Hz1∕2 at 4.2 K. 
    more » « less
  3. We demonstrate indirect electric-field control of ferromagnetic resonance (FMR) in devices that integrate the low-loss, molecule-based, room-temperature ferrimagnet vanadium tetracyanoethylene (V[TCNE]x∼2) mechanically coupled to PMN-PT piezoelectric transducers. Upon straining the V[TCNE]x films, the FMR frequency is tuned by more than 6 times the resonant linewidth with no change in Gilbert damping for samples with α = 6.5 × 10−5. We show this tuning effect is due to a strain-dependent magnetic anisotropy in the films and find the magnetoelastic coefficient |λs| ∼ (1–4.4) ppm, backed by theoretical predictions from density-functional theory calculations and magnetoelastic theory. Noting the rapidly expanding application space for strain-tuned FMR, we define a new metric for magnetostrictive materials, magnetostrictive agility, given by the ratio of the magnetoelastic coefficient to the FMR linewidth. This agility allows for a direct comparison between magnetostrictive materials in terms of their comparative efficacy for magnetoelectric applications requiring ultra-low loss magnetic resonance modulated by strain. With this metric, we show V[TCNE]x is competitive with other magnetostrictive materials, including YIG and Terfenol-D. This combination of ultra-narrow linewidth and magnetostriction, in a system that can be directly integrated into functional devices without requiring heterogeneous integration in a thin film geometry, promises unprecedented functionality for electric-field tuned microwave devices ranging from low-power, compact filters and circulators to emerging applications in quantum information science and technology. 
    more » « less
  4. An increasing magnetic field perpendicular to an undoped semiconductor surface at low temperature is known to strengthen the binding of localized electrons to stationary ions, as the wavefunction's tails evolve from exponential to Gaussian. It is also known that application of a high bias voltage to a depleted semiconductor can liberate bound charge and induce a large drop in electrical resistance. We connect these established results to experimental electrical transport measurements on off-state germanium Schottky-barrier metal–oxide–semiconductor field-effect transistor (MOSFETs) with an aluminum oxide insulating dielectric and platinum germanide contacts. We make measurements at the three distinct orientations of the magnetic field with respect to the substrate and the current. At 6 K, we observe sharp attenuation of current by more than 2 orders of magnitude, within 60 mT, at a crossover magnetic field perpendicular to the substrate. A 1 T magnetic field attenuates the current by more than 4 orders of magnitude. The strength of the attenuation and the value of the crossover field are controlled by both the gate–source and drain–source voltages. The attenuation is much weaker when the magnetic field is parallel to the current. Finally, we orient the magnetic field parallel to the substrate, but perpendicular to the current, allowing us to distinguish charge hopping at the oxide interface from charge hopping in the bulk. This large off-state magnetoresistance can be exploited for cryogenic magnetic- and photo-detection, and for high-bias, low-leakage MOSFETs. 
    more » « less
  5. The pursuit of room temperature quantum optomechanics with tethered nanomechanical resonators faces stringent challenges owing to extraneous mechanical degrees of freedom. An important example is thermal intermodulation noise (TIN), a form of excess optical noise produced by mixing of thermal noise peaks. While TIN can be decoupled from the phase of the optical field, it remains indirectly coupled via radiation pressure, implying a hidden source of backaction that might overwhelm shot noise. Here we report observation of TIN backaction in a high-cooperativity, room temperature cavity optomechanical system consisting of an acoustic-frequency Si3N4trampoline coupled to a Fabry–Perot cavity. The backaction we observe exceeds thermal noise by 20 dB and radiation pressure shot noise by 40 dB, despite the thermal motion being 10 times smaller than the cavity linewidth. Our results suggest that mitigating TIN may be critical to reaching the quantum regime from room temperature in a variety of contemporary optomechanical systems. 
    more » « less