skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 3, 2025

Title: Projective toric designs, quantum state designs, and mutually unbiased bases
Toric t -designs, or equivalently t -designs on the diagonal subgroup of the unitary group, are sets of points on the torus over which sums reproduce integrals of degree t monomials over the full torus. Motivated by the projective structure of quantum mechanics, we develop the notion of t -designs on the projective torus, which have a much more restricted structure than their counterparts on full tori. We provide various new constructions of toric and projective toric designs and prove bounds on their size. We draw connections between projective toric designs and a diverse set of mathematical objects, including difference and Sidon sets from the field of additive combinatorics, symmetric, informationally complete positive operator valued measures and complete sets of mutually unbiased bases (MUBs) from quantum information theory, and crystal ball sequences of certain root lattices. Using these connections, we prove bounds on the maximal size of dense B t mod m sets. We also use projective toric designs to construct families of quantum state designs. In particular, we construct families of (uniformly-weighted) quantum state 2 -designs in dimension d of size exactly d ( d + 1 ) that do not form complete sets of MUBs, thereby disproving a conjecture concerning the relationship between designs and MUBs (Zhu 2015). We then propose a modification of Zhu's conjecture and discuss potential paths towards proving this conjecture. We prove a fundamental distinction between complete sets of MUBs in prime-power dimensions versus in dimension 6 (and, we conjecture, in all non-prime-power dimensions), the distinction relating to group structure of the corresponding projective toric design. Finally, we discuss many open questions about the properties of these projective toric designs and how they relate to other questions in number theory, geometry, and quantum information.  more » « less
Award ID(s):
2120757
PAR ID:
10592880
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Quantum
Date Published:
Journal Name:
Quantum
Volume:
8
ISSN:
2521-327X
Page Range / eLocation ID:
1546
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We propose a systematic and efficient quantum circuit composed solely of Clifford gates for simulating the ground state of the surface code model. This approach yields the ground state of the toric code in 2 L + 2 + l o g 2 ( d ) + L 2 d time steps, where L refers to the system size and d represents the maximum distance to constrain the application of the CNOT gates. Our algorithm reformulates the problem into a purely geometric one, facilitating its extension to attain the ground state of certain 3D topological phases, such as the 3D toric model in 3 L + 8 steps and the X-cube fracton model in 12 L + 11 steps. Furthermore, we introduce a gluing method involving measurements, enabling our technique to attain the ground state of the 2D toric code on an arbitrary planar lattice and paving the way to more intricate 3D topological phases. 
    more » « less
  2. Consider the Vlasov–Poisson–Landau system with Coulomb potential in the weakly collisional regime on a 3 3 -torus, i.e. ∂<#comment/> t F ( t , x , v ) + v i ∂<#comment/> x i F ( t , x , v ) + E i ( t , x ) ∂<#comment/> v i F ( t , x , v ) = ν<#comment/> Q ( F , F ) ( t , x , v ) , E ( t , x ) = ∇<#comment/> Δ<#comment/> −<#comment/> 1 ( ∫<#comment/> R 3 F ( t , x , v ) d v −<#comment/> ∫<#comment/> −<#comment/> T 3 ∫<#comment/> R 3 F ( t , x , v ) d v d x ) , \begin{align*} \partial _t F(t,x,v) + v_i \partial _{x_i} F(t,x,v) + E_i(t,x) \partial _{v_i} F(t,x,v) = \nu Q(F,F)(t,x,v),\\ E(t,x) = \nabla \Delta ^{-1} (\int _{\mathbb R^3} F(t,x,v)\, \mathrm {d} v - {{\int }\llap {-}}_{\mathbb T^3} \int _{\mathbb R^3} F(t,x,v)\, \mathrm {d} v \, \mathrm {d} x), \end{align*} with ν<#comment/> ≪<#comment/> 1 \nu \ll 1 . We prove that for ϵ<#comment/> > 0 \epsilon >0 sufficiently small (but independent of ν<#comment/> \nu ), initial data which are O ( ϵ<#comment/> ν<#comment/> 1 / 3 ) O(\epsilon \nu ^{1/3}) -Sobolev space perturbations from the global Maxwellians lead to global-in-time solutions which converge to the global Maxwellians as t →<#comment/> ∞<#comment/> t\to \infty . The solutions exhibit uniform-in- ν<#comment/> \nu Landau damping and enhanced dissipation. Our main result is analogous to an earlier result of Bedrossian for the Vlasov–Poisson–Fokker–Planck equation with the same threshold. However, unlike in the Fokker–Planck case, the linear operator cannot be inverted explicitly due to the complexity of the Landau collision operator. For this reason, we develop an energy-based framework, which combines Guo’s weighted energy method with the hypocoercive energy method and the commuting vector field method. The proof also relies on pointwise resolvent estimates for the linearized density equation. 
    more » « less
  3. Abstract We construct projective toric surfaces whose blow-up at a general point has a non-polyhedral pseudo-effective cone.As a consequence, we prove that the pseudo-effective cone of the Grothendieck–Knudsen moduli space M ¯ 0 , n \overline{M}_{0,n}of stable rational curves is not polyhedral for n 10 n\geq 10.These results hold both in characteristic 0 and in characteristic 𝑝, for all primes 𝑝.Many of these toric surfaces are related to an interesting class of arithmetic threefolds that we call arithmetic elliptic pairs of infinite order.Our analysis relies on tools of arithmetic geometry and Galois representations in the spirit of the Lang–Trotter conjecture, producing toric surfaces whose blow-up at a general point has a non-polyhedral pseudo-effective cone in characteristic 0 and in characteristic 𝑝, for an infinite set of primes 𝑝 of positive density. 
    more » « less
  4. We prove the unbounded denominators conjecture in the theory of noncongruence modular forms for finite index subgroups of SL 2 ⁡<#comment/> ( Z ) \operatorname {SL}_2(\mathbf {Z}) . Our result includes also Mason’s generalization of the original conjecture to the setting of vector-valued modular forms, thereby supplying a new path to the congruence property in rational conformal field theory. The proof involves a new arithmetic holonomicity bound of a potential-theoretic flavor, together with Nevanlinna second main theorem, the congruence subgroup property of SL 2 ⁡<#comment/> ( Z [ 1 / p ] ) \operatorname {SL}_2(\mathbf {Z}[1/p]) , and a close description of the Fuchsian uniformization D ( 0 , 1 ) / Γ<#comment/> N D(0,1)/\Gamma _N of the Riemann surface C ∖<#comment/> μ<#comment/> N \mathbf {C} \smallsetminus \mu _N
    more » « less
  5. Ribet, Kenneth (Ed.)
    We consider certain convolution sums that are the subject of a conjecture by Chester, Green, Pufu, Wang, and Wen in string theory. We prove a generalized form of their conjecture, explicitly evaluating absolutely convergent sums n 1 Z { 0 , n } φ ( n 1 , n n 1 ) σ 2 m 1 ( n 1 ) σ 2 m 2 ( n n 1 ) , where φ ( n 1 , n 2 ) is a Laurent polynomial with logarithms. Contrary to original expectations, such convolution sums, suitably extended to n 1 { 0 , n } , do not vanish, but instead, they carry number theoretic meaning in the form of Fourier coefficients of holomorphic cusp forms. 
    more » « less