skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 30, 2026

Title: Plant diversity dynamics over space and time in a warming Arctic
Abstract The Arctic is warming four times faster than the global average1and plant communities are responding through shifts in species abundance, composition and distribution2–4. However, the direction and magnitude of local changes in plant diversity in the Arctic have not been quantified. Using a compilation of 42,234 records of 490 vascular plant species from 2,174 plots across the Arctic, here we quantified temporal changes in species richness and composition through repeat surveys between 1981 and 2022. We also identified the geographical, climatic and biotic drivers behind these changes. We found greater species richness at lower latitudes and warmer sites, but no indication that, on average, species richness had changed directionally over time. However, species turnover was widespread, with 59% of plots gaining and/or losing species. Proportions of species gains and losses were greater where temperatures had increased the most. Shrub expansion, particularly of erect shrubs, was associated with greater species losses and decreasing species richness. Despite changes in plant composition, Arctic plant communities did not become more similar to each other, suggesting no biotic homogenization so far. Overall, Arctic plant communities changed in richness and composition in different directions, with temperature and plant–plant interactions emerging as the main drivers of change. Our findings demonstrate how climate and biotic drivers can act in concert to alter plant composition, which could precede future biodiversity changes that are likely to affect ecosystem function, wildlife habitats and the livelihoods of Arctic peoples5,6 more » « less
Award ID(s):
1836839 1836861
PAR ID:
10594055
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publisher / Repository:
Nature
Date Published:
Journal Name:
Nature
ISSN:
0028-0836
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Global change is impacting plant community composition, but the mechanisms underlying these changes are unclear. Using a dataset of 58 global change experiments, we tested the five fundamental mechanisms of community change: changes in evenness and richness, reordering, species gains and losses. We found 71% of communities were impacted by global change treatments, and 88% of communities that were exposed to two or more global change drivers were impacted. Further, all mechanisms of change were equally likely to be affected by global change treatments—species losses and changes in richness were just as common as species gains and reordering. We also found no evidence of a progression of community changes, for example, reordering and changes in evenness did not precede species gains and losses. We demonstrate that all processes underlying plant community composition changes are equally affected by treatments and often occur simultaneously, necessitating a wholistic approach to quantifying community changes. 
    more » « less
  2. The loss of plant productivity with declining diversity is well established, exceeding other global change drivers including drought. These patterns are most clearly established for aboveground productivity, it remains poorly understood whether productivity increases associated with diversity are replicated belowground. To address this gap, we established a plant diversity-manipulation experiment in 2018. It is a full factorial manipulation of plant species richness and community composition, and precipitation. Three and five years post-establishment, two bulk soil cores (20cm depth) were collected and composited from each plot and were processed for roots to determine belowground biomass as root standing crop. We observed a strong positive relationship between richness and aboveground production and belowground biomass, generating positive combined above and belowground with diversity. Root standing crop increased 1.4-fold from years three to five. Grass communities produced more root biomass (monoculture mean 463.9 ± 410.3g m−2), and the magnitude of the relationship between richness and root standing crop was greatest within those communities. Legume communities produced the fewest roots (monoculture mean 212.2 ± 155.1g m−2), and belowground standing crop was not affected by diversity. Root standing crops in year three were 1.8 times higher under low precipitation conditions, while in year five we observed comparable root standing crops between precipitation treatments. Plant family was a strong mediator of increased belowground biomass observed with diversity, with single family grass and aster families generating 1.7 times greater root standing crops in six compared to single species communities, relationships between diversity and aboveground production were consistently observed in both single-family and multiple family communities. Diverse communities with species from multiple families generated only 1.3 times the root standing crop compared to monoculture average root biomass. We surprisingly observe diverse single family communities can generate increases in root standing crops that exceed those generated by diverse multiple family communities, highlighting the importance of plant richness within plant family for a given community. These patterns have potential implications for understanding the interactions of multiple global change drivers as changes in both precipitation and plant community composition do alter whether plant production aboveground is translated belowground biomass. 
    more » « less
  3. Abstract While the relationship between plant and microbial diversity has been well studied in grasslands, less is known about similar relationships in forests, especially for obligately symbiotic arbuscular mycorrhizal (AM) fungi. To assess the effect of varying tree diversity on microbial alpha- and beta-diversity, we sampled soil from plots in a high-density tree diversity experiment in Minnesota, USA three years after establishment. Three of 12 tree species are AM hosts; the other nine primarily associate with ectomycorrhizal fungi. We used phospho- and neutral lipid fatty acid analysis to characterize the biomass and functional identity of the whole soil bacterial and fungal community and high throughput sequencing to identify the species-level richness and composition of the AM fungal community. We found that plots of differing tree composition had different bacterial and fungal communities; plots with conifers, and especially Juniperus virginiana, had lower densities of several bacterial groups. In contrast, plots with a higher density or diversity of AM hosts showed no sign of greater AM fungal abundance or diversity. Our results indicate that early responses to plant diversity vary considerably across microbial groups, with AM fungal communities potentially requiring longer timescales to respond to changes in host tree diversity. 
    more » « less
  4. Abstract Global climate and land use change are causing woody plant encroachment in arctic, alpine, and arid/semi‐arid ecosystems around the world, yet our understanding of the belowground impacts of this phenomenon is limited. We conducted a globally distributed field study of 13 alpine sites across four continents undergoing woody plant encroachment and sampled soils from both woody encroached and nearby herbaceous plant community types. We found that woody plant encroachment influenced soil microbial richness and community composition across sites based on multiple factors including woody plant traits, site level climate, and abiotic soil conditions. In particular, root symbiont type was a key determinant of belowground effects, as Nitrogen‐fixing woody plants had higher soil fungal richness, while Ecto/Ericoid mycorrhizal species had higher soil bacterial richness and symbiont types had distinct soil microbial community composition. Woody plant leaf traits indirectly influenced soil microbes through their impact on soil abiotic conditions, primarily soil pH and C:N ratios. Finally, site‐level climate affected the overall magnitude and direction of woody plant influence, as soil fungal and bacterial richness were either higher or lower in woody encroached versus herbaceous soils depending on mean annual temperature and precipitation. All together, these results document global impacts of woody plant encroachment on soil microbial communities, but highlight that multiple biotic and abiotic pathways must be considered to scale up globally from site‐ and species‐level patterns. Considering both the aboveground and belowground effects of woody encroachment will be critical to predict future changes in alpine ecosystem structure and function and subsequent feedbacks to the global climate system. 
    more » « less
  5. Abstract Ants are important components of many terrestrial ecosystems because of their high abundance, their central position in food webs, and because they can strongly influence ecosystem properties such as soil aeration, nutrient cycling, and plant community composition. Moreover, ants are also known to respond strongly to changes in environmental and biological conditions. In particular, two major anthropogenic environmental impacts – climate change and the loss of primary producers – may have interactive effects on ant communities. To examine this potential interaction, we quantified pitfall trap sampled ant diversity and activity across a fully factorial experiment manipulating temperature and grassland plant species richness at the Cedar Creek Ecosystem Science Reserve in Minnesota, USA. Consistent with previous arthropod studies, we found a significant increase in sampled ant diversity in plots with higher sown plant species richness, such that plots with the largest number of plant species also had the highest sampled ant diversity. However, the strength of this relationship declined significantly in experimentally warmed subplots, especially when considered for higher aggregated spatial scales of samples. Taken together, these results suggest that the positive effects of plant diversity on sampled ant diversity may be partially undermined under warmer conditions. 
    more » « less