skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Quasipositive links and Stein surfaces
We study the generalization of quasipositive links from the 3-sphere to arbitrary closed, orientable 3-manifolds. Our main result shows that the boundary of any smooth, properly embedded complex curve in a Stein domain is a quasipositive link. This generalizes a result due to Boileau and Orevkov, and it provides the first half of a topological characterization of links in 3-manifolds which bound complex curves in a Stein filling. Our arguments replace pseudoholomorphic curve techniques with a study of characteristic and open book foliations on surfaces in 3- and 4-manifolds.  more » « less
Award ID(s):
1803584
PAR ID:
10594333
Author(s) / Creator(s):
Publisher / Repository:
Mathematical Sciences Publishers
Date Published:
Journal Name:
Geometry & Topology
Volume:
25
Issue:
3
ISSN:
1465-3060
Page Range / eLocation ID:
1441 to 1477
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A symplectic rational cuspidal curve with positive self-intersection number admits a concave neighborhood, and thus a corresponding contact manifold on the boundary. In this article, we study symplectic fillings of such contact manifolds, providing a complementary perspective to our earlier article on symplectic isotopy classes of rational cuspidal curves. We explore aspects of these symplectic fillings through Stein handlebodies and rational blow-downs. We give examples of such contact manifolds which are identifiable as links of normal surface singularities, other examples which admit no symplectic fillings, and further examples where the fillings can be fully classified. 
    more » « less
  2. Abstract We construct closed arboreal Lagrangian skeleta associated to links of isolated plane curve singularities. This yields closed Lagrangian skeleta for Weinstein pairs $$(\mathbb {C}^2,\Lambda )$$ ( C 2 , Λ ) and Weinstein 4-manifolds $$W(\Lambda )$$ W ( Λ ) associated to max-tb Legendrian representatives of algebraic links $$\Lambda \subseteq (\mathbb {S}^3,\xi _\text {st})$$ Λ ⊆ ( S 3 , ξ st ) . We provide computations of Legendrian and Weinstein invariants, and discuss the contact topological nature of the Fomin–Pylyavskyy–Shustin–Thurston cluster algebra associated to a singularity. Finally, we present a conjectural ADE-classification for Lagrangian fillings of certain Legendrian links and list some related problems. 
    more » « less
  3. null (Ed.)
    Abstract We show the existence of complete negative Kähler–Einstein metric on Stein manifolds with holomorphic sectional curvature bounded from above by a negative constant. We prove that any Kähler metrics on such manifolds can be deformed to the complete negative Kähler–Einstein metric using the normalized Kähler–Ricci flow. 
    more » « less
  4. null (Ed.)
    We consider hyperbolic links that admit alternating projections on surfaces in compact, irreducible 3-manifolds. We show that, under some mild hypotheses, the volume of the complement of such a link is bounded below in terms of a Kauffman bracket function defined on link diagrams on the surface. In the case that the 3-manifold is a thickened surface, this Kauffman bracket function leads to a Jones-type polynomial that is an isotopy invariant of links. We show that coefficients of this polynomial provide 2-sided linear bounds on the volume of hyperbolic alternating links in the thickened surface. As a corollary of the proof of this result, we deduce that the twist number of a reduced, twist reduced, checkerboard alternating link projection with disk regions, is an invariant of the link. 
    more » « less
  5. We define a suitably tame class of singular symplectic curves in 4-manifolds, namely those whose singularities are modeled on complex curve singularities. We study the corresponding symplectic isotopy problem, with a focus on rational curves with irreducible singularities (rational cuspidal curves) in the complex projective plane. We prove that every such curve is isotopic to a complex curve in degrees up to five, and for curves with one singularity whose link is a torus knot. Classification results of symplectic isotopy classes rely on pseudo-holomorphic curves together with a symplectic version of birational geometry of log pairs and techniques from four-dimensional topology. 
    more » « less