skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Homoepitaxial β -Ga2O3 transparent conducting oxide with conductivity σ = 2323 S cm−1
Conductive homoepitaxial Si-doped β-Ga2O3 films were fabricated by pulsed laser deposition with an as-deposited 2323 S cm−1 conductivity (resistivity = 4.3 × 10−4 Ω-cm, carrier concentration = 2.24 × 1020 cm−3, mobility = 64.5 cm2 V−1 s−1, and electrical activation efficiency = 77%). High quality homoepitaxial films deposited on commercial (010) Fe-compensated β-Ga2O substrates were determined by high-resolution transmission electron microscopy and x-ray diffraction. The β-Ga2O3 films have ∼70% transparency from 3.7 eV (335 nm) to 0.56 eV (2214 nm). The combination of high conductivity and transparency offers promise for numerous ultrawide bandgap electronics and optoelectronic applications.  more » « less
Award ID(s):
1719875
PAR ID:
10594697
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
APL Materials
Volume:
9
Issue:
10
ISSN:
2166-532X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A new growth approach, based on the hot-wall metalorganic chemical vapor deposition concept, is developed for high-quality homoepitaxial growth of Si-doped single-crystalline β-Ga2O3 layers on (010)-oriented native substrates. Substrate annealing in argon atmosphere for 1 min at temperatures below 600 °C is proposed for the formation of epi-ready surfaces as a cost-effective alternative to the traditionally employed annealing process in oxygen-containing atmosphere with a time duration of 1 h at about 1000 °C. It is shown that the on-axis rocking curve widths exhibit anisotropic dependence on the azimuth angle with minima for in-plane direction parallel to the [001] and maximum for the [100] for both substrate and layer. The homoepitaxial layers are demonstrated to have excellent structural properties with a β-Ga2O3(020) rocking curve full-widths at half-maximum as low as 11 arc sec, which is lower than the corresponding one for the substrates (19 arc sec), even for highly Si-doped (low 1019 cm−3 range) layers. Furthermore, the structural anisotropy in the layer is substantially reduced with respect to the substrate. Very smooth surface morphology of the epilayers with a root mean square roughness value of 0.6 nm over a 5 × 5 μm2 area is achieved along with a high electron mobility of 69 cm2 V−1 s−1 at a free carrier concentration n=1.9×1019 cm−3. These values compare well with state-of-the-art parameters reported in the literature for β-Ga2O3(010) homoepitaxial layers with respective Si doping levels. Thermal conductivity of 17.4 Wm−1K−1 is determined along the [010] direction for the homoepitaxial layers at 300 K, which approaches the respective value of bulk crystal (20.6 Wm−1K−1). This result is explained by a weak boundary effect and a low dislocation density in the homoepitaxial layers. 
    more » « less
  2. Optimizing thermal anneals of Si-implanted β-Ga2O3 is critical for low resistance contacts and selective area doping. We report the impact of annealing ambient, temperature, and time on the activation of room temperature ion-implanted Si in β-Ga2O3 at concentrations from 5 × 1018 to 1 × 1020 cm−3, demonstrating full activation (>80% activation, mobilities >70 cm2/V s) with contact resistances below 0.29 Ω mm. Homoepitaxial β-Ga2O3 films, grown by plasma-assisted molecular beam epitaxy on Fe-doped (010) substrates, were implanted at multiple energies to yield 100 nm box profiles of 5 × 1018, 5 × 1019, and 1 × 1020 cm−3. Anneals were performed in an ultra-high vacuum-compatible quartz furnace at 1 bar with well-controlled gas compositions. To maintain β-Ga2O3 stability, pO2 must be greater than 10−9 bar. Anneals up to pO2 = 1 bar achieve full activation at 5 × 1018 cm−3, while 5 × 1019 cm−3 must be annealed with pO2 ≤ 10−4 bar, and 1 × 1020 cm−3 requires pO2 < 10−6 bar. Water vapor prevents activation and must be maintained below 10−8 bar. Activation is achieved for anneal temperatures as low as 850 °C with mobility increasing with anneal temperatures up to 1050 °C, though Si diffusion has been reported above 950 °C. At 950 °C, activation is maximized between 5 and 20 min with longer times resulting in decreased carrier activation (over-annealing). This over-annealing is significant for concentrations above 5 × 1019 cm−3 and occurs rapidly at 1 × 1020 cm−3. Rutherford backscattering spectrometry (channeling) suggests that damage recovery is seeded from remnant aligned β-Ga2O3 that remains after implantation; this conclusion is also supported by scanning transmission electron microscopy showing retention of the β-phase with inclusions that resemble the γ-phase. 
    more » « less
  3. Obtaining uniform silicon concentration, especially with low concentrations (ranging from 1 × 1016 to 1 × 1018 cm−3) by molecular beam epitaxy, has been challenging due to oxidation of a silicon solid source in the oxide environment. In this work, Si doping of β-Ga2O3 (010) films by diluted disilane as the Si source is investigated using hybrid plasma-assisted molecular beam epitaxy. The impact of growth temperature, disilane source concentration, and disilane flow rate on Si incorporation was studied by secondary ion mass spectrometry. Uniform Si concentrations ranging from 3 × 1016 to 2 × 1019 cm−3 are demonstrated. Si-doped β-Ga2O3 films with different silicon concentrations were grown on Fe-doped β-Ga2O3 (010) substrates. The electron concentration and mobility were determined using van de Pauw Hall measurements. A high mobility of 135 cm2/V s was measured for an electron concentration of 3.4 × 1017 cm−3 at room temperature. 
    more » « less
  4. The thermal conductivities of (100) γ-Ga2O3 films deposited on (100) MgAl2O4 substrates with various thicknesses were measured using frequency-domain thermoreflectance. The measured thermal conductivities of γ-Ga2O3 films are lower than the thermal conductivities of (2¯ 01) β-Ga2O3 films of comparable thickness, which suggests that γ-phase inclusions in the doped or alloyed β-phase may affect its thermal conductivity. The thermal conductivity of γ-Ga2O3 increases from 2.3−0.5+0.9 to 3.5±0.7 W/m K for films with thicknesses of 75–404 nm, which demonstrates a prominent size effect on thermal conductivity. The thermal conductivity of γ-Ga2O3 also shows a slight increase as temperature increases from 293 to 400 K. This increase in thermal conductivity occurs when defect and boundary scattering suppress signatures of temperature-dependent Umklapp scattering. γ-Ga2O3 has a cation-defective spinel structure with at least two gallium vacancies in every unit cell, which are the likely source of defect scattering. 
    more » « less
  5. Teherani, Ferechteh H.; Rogers, David J. (Ed.)
    We demonstrated a metal-organic chemical vapor deposition (MOCVD) of smooth, thick, and monoclinic phase-pure gallium oxide (Ga2O3) on c-plane sapphire using silicon-oxygen bonding (SiOx) as a phase stabilizer. The corundum (α), monoclinic (β), and orthorhombic (ε) phases of Ga2O3 with a bandgap in the 4.4 – 5.1 eV range, are promising materials for power semiconductor devices and deep ultraviolet (UV) solar-blind photodetectors. The MOCVD systems are extensively used for homoepitaxial growth of β-Ga2O3 on (001), (100), (010), and (¯2 01) β-Ga2O3 substrates. These substrates are rare/expensive and have very low thermal conductivity; thus, are not suitable for high-power semiconductor devices. The c-plane sapphire is typically used as a substrate for high-power devices. The β-Ga2O3 grows in the (¯2 01) direction on sapphire. In this direction, the presence of high-density oxygen dangling bonds, frequent stacking faults, twinning, and other phases and planes impede the heteroepitaxy of thick β-Ga2O3. Previously phase stabilizations with SiOx have been reported for tetragonal and monoclinic hafnia. We were able to grow ~580nm thick β-Ga2O3 on sapphire by MOCVD at 750 oC through phase stabilization using silane. The samples grown with silane have a reduction in the surface roughness and resistivity from 10.7 nm to 4.4 nm and from 371.75 Ω.cm to 135.64 Ω.cm, respectively. These samples show a pure-monoclinic phase determined by x-ray diffraction (XRD); have tensile strain determined by Raman strain mapping. These results show that a thick, phase-pure -Ga2O3 can be grown on c-plane sapphire which can be suitable for creating power devices with better thermal management. 
    more » « less