skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Hybrid Cyber-attack Detection in Photovoltaic Farms
To address the cyber-physical security in PV farms, a hybrid cyber-attack detection is proposed in this manuscript. To secure PV farms, the proposed method integrates model-based and data-driven methods by fusing the detection score at the device and system levels. First, a model-based cyber-attack detection method is developed for each PV inverter. A residual between the estimation of the Kalman filter and measurement is calculated. By leveraging the calculated residual from all inverters, a squared Mahalanobis distance is developed for device detection score generation. At the system level, a convolutional neural network (CNN) is proposed to detect cyber-attack using the waveform data at the point of common coupling (PCC) in PV farms. To improve the CNN detection accuracy, a set of well-designed features are extracted from the raw waveform data. Finally, a weighted detection score fusion method is proposed to combine device and system detection scores by using their complementary strength. The feasibility and robustness of the proposed method are validated by testing cases and a comparative experiment.  more » « less
Award ID(s):
2306109
PAR ID:
10594813
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
IEEE Xplore
Date Published:
ISBN:
979-8-3503-1644-5
Page Range / eLocation ID:
6295 to 6300
Format(s):
Medium: X
Location:
Nashville, TN, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. Cyberattacks targeted to the energy cyber-physical system (ECPS), also known as the smart grid, could interrupt the electricity supply with major ramifications. Attackers identify and exploit any vulnerable portion of the energy power grid, including the inverters with solar-powered photovoltaic (PV) panels. PV presents unique challenges as electricity consumers have also become providers of solar energy for utilities. As mandates require increased PV penetration across the world for positive environmental impacts, increased cyberattacks targeted at PV systems impact reliability and efficiency within the ECPS. The new technologies continuously being introduced to manage the ECPS and ensure bi-directional communications and energy flow between components also lead to more attack surfaces, system vulnerabilities, and heightened malicious attacks. Data integrity attacks are increasing within PV systems. In this paper, we present a survey of different methods that are proposed and explored for identifying and preventing cyberattacks targeted at PV systems. The attack detection methods include voltage control, data diodes, and voltage measurement algorithms. Furthermore, we present blockchain, cyber switching, and other attack mitigation techniques for PV systems. 
    more » « less
  2. This paper focuses on the detection of cyber-attack on a communication channel and simultaneous radar health monitoring for a connected vehicle. A semi-autonomous adaptive cruise control (SA-ACC) vehicle is considered which has wireless communication with its immediately preceding vehicle to operate at small time-gap distances without creating string instability. However, the reliability of the wireless connectivity is critical for ensuring safe vehicle operation. The presence of two unknown inputs related to both sensor failure and cyber-attack seemingly poses a difficult estimation challenge. The dynamic system is first represented in descriptor system form. An observer with estimation error dynamics decoupled from the cyber-attack signal is developed. The performance of the observer is extensively evaluated in simulations. The estimation system is able to detect either a fault in the velocity measurement radar channel or a cyber-attack. Also, the proposed observer-based controller achieves resilient SA-ACC system under the cyber-attacks. The fundamental estimation algorithm developed herein can be extended in the future to enable cyber-attack detection in more complex connected vehicle architectures. 
    more » « less
  3. Photovoltaic (PV) array analytics and control have become necessary for remote solar farms and for intelligent fault detection and power optimization. The management of a PV array requires auxiliary electronics that are attached to each solar panel. A collaborative industry-university-government project was established to create a smart monitoring device (SMD) and establish associated algorithms and software for fault detection and solar array management. First generation smart monitoring devices (SMDs) were built in Japan. At the same time, Arizona State University initiated research in algorithms and software to monitor and control individual solar panels. Second generation SMDs were developed later and included sensors for monitoring voltage, current, temperature, and irradiance at each individual panel. The latest SMDs include a radio and relays which allow modifying solar array connection topologies. With each panel equipped with such a sophisticated SMD, solar panels in a PV array behave essentially as nodes in an Internet of Things (IoT) type of topology. This solar energy IoT system is currently programmable and can: a) provide mobile analytics, b) enable solar farm control, c) detect and remedy faults, d) optimize power under different shading conditions, and e) reduce inverter transients. A series of federal and industry grants sponsored research on statistical signal analysis, communications, and optimization of this system. A Cyber-Physical project, whose aim is to improve solar array efficiency and robustness using new machine learning and imaging methods, was launched recently 
    more » « less
  4. In this paper, a signature-based Intrusion Detection System (IDS) is developed to detect cyber intrusions of a distribution system with a high level penetration of solar energy. To identify cyberattack events, an attack table is constructed based on the Temporal Failure Propagation Graph (TFPG) technique. It includes the information of potential cyberattack patterns in terms of attack types and time sequence of anomaly events. Once the detected anomaly events are matched with any of the predefined attack patterns, it is judged to be a cyberattack. Since the attack patterns are distinguishable from other system failures, it reduces the false positive rate. To study the impact of cyberattacks on solar devices and validate the performance of the proposed IDS, a realistic Cyber-Physical System (CPS) simulation environment available at Virginia Tech (VT) is used to develop an interconnection between the cyber and power system models. The CPS model demonstrates how communication system anomalies can impact the physical system. The results of two example cyberattack test cases are obtained with the IEEE 13 node test feeder system and the power system simulator, DIgSILENT PowerFactory. 
    more » « less
  5. In this paper, we describe a Cyber-Physical system approach to Photovoltaic (PV) array control. A machine learning and computer vision framework is proposed for improving the reliability of utility scale PV arrays by leveraging video analysis of local skyline imagery, customized machine learning methods for fault detection, and monitoring devices that sense data and actuate at each individual panel. Our approach promises to improve efficiency in renewable energy systems using cyber-enabled sensory analysis and fusion. 
    more » « less