Highly conductive Ge-doped AlN with conductivity of 0.3 (Ω cm)−1 and electron concentration of 2 × 1018 cm−3 was realized via a non-equilibrium process comprising ion implantation and annealing at a moderate thermal budget. Similar to a previously demonstrated shallow donor state in Si-implanted AlN, Ge implantation also showed a shallow donor behavior in AlN with an ionization energy ∼80 meV. Ge showed a 3× higher conductivity than its Si counterpart for a similar doping level. Photoluminescence spectroscopy indicated that higher conductivity for Ge-doped AlN was achieved primarily due to lower compensation. This is the highest n-type conductivity reported for AlN doped with Ge to date and demonstration of technologically useful conductivity in Ge-doped AlN.
more »
« less
Excitonic and deep-level emission from N- and Al-polar homoepitaxial AlN grown by molecular beam epitaxy
Using low-temperature cathodoluminescence spectroscopy, we study the properties of N- and Al-polar AlN layers grown by molecular beam epitaxy on bulk AlN{0001}. Compared with the bulk AlN substrate, layers of both polarities feature a suppression of deep-level luminescence, a total absence of the prevalent donor with an exciton binding energy of 28 meV, and a much increased intensity of the emission from free excitons. The dominant donor in these layers is characterized by an associated exciton binding energy of 13 meV. The observation of excited exciton states up to the exciton continuum allows us to directly extract the Γ5 free exciton binding energy of 57 meV.
more »
« less
- PAR ID:
- 10594934
- Publisher / Repository:
- American Institute of Physics
- Date Published:
- Journal Name:
- APL Materials
- Volume:
- 11
- Issue:
- 8
- ISSN:
- 2166-532X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Near-ideal behavior in Schottky contacts to Si-doped AlN was observed as evidenced by a low ideality factor of 1.5 at room temperature. A temperature-independent Schottky barrier height of 1.9 eV was extracted from temperature-dependent I–V measurements. An activation energy of ∼300 meV was observed in the series resistance, which corresponded to the ionization energy of the deep Si donor state. Both Ohmic and Schottky contacts were stable up to 650 °C, with around four orders of magnitude rectification at this elevated temperature. These results demonstrate the potential of AlN as a platform for power devices capable of operating in extreme environments.more » « less
-
Record low resistivities of 10 and 30 Ω cm and room-temperature free hole concentrations as high as 3 × 1018 cm−3were achieved in bulk doping of Mg in Al0.6Ga0.4N films grown on AlN single crystalline wafer and sapphire. The highly conductive films exhibited a low ionization energy of 50 meV and impurity band conduction. Both high Mg concentration (>2 × 1019cm−3) and low compensation were required to achieve impurity band conduction and high p-type conductivity. The formation of VN-related compensators was actively suppressed by chemical potential control during the deposition process. This work overcomes previous limitations in p-type aluminum gallium nitride (p-AlGaN) and offers a technologically viable solution to high p-conductivity in AlGaN and AlN.more » « less
-
Two-dimensional organic–inorganic hybrid perovskite (2D-OIHP) quantum wells exhibit a triplet of bright exciton fine structure states near the band edge, enabling the generation of transient macroscopic spin alignments with circularly polarized light. Here, we investigate the microscopic origin of photoinduced spin relaxation in 2D-OIHPs using multidimensional coherent spectroscopy together with a theoretical framework that combines time-dependent perturbation theory with the Fokker–Planck equation. Analysis of the spectral line shapes reveals highly correlated exciton fluctuations within the fine structure manifolds of a pair of 2D-OIHPs featuring different organic layer thicknesses and polaron binding energies. In particular, the Gaussian correlation coefficients determined for the two lead-iodide-based systems range from 0.67 to 0.80, while their polaron binding energies span 11.8–18.9 meV. Incorporating time-coincident solvation dynamics into a stochastic model shows that these energy level correlations reduce the exciton–bath couplings and extend dephasing times for spin-flip transitions, even in spectral broadening regimes governed by Marcus-like kinetics (which are typically considered incompatible with motional narrowing). Since photoexcitation occurs on the seam of intersection between the excited-state free energy surfaces, spin relaxation can proceed without an activation barrier, provided it outpaces energy dissipation into the environment. Overall, these results demonstrate that correlated exciton fluctuations play a central role in accelerating spin depolarization in 2D-OIHPs through motional narrowing of coherences between exciton states.more » « less
-
The optical spectra of transition metal dichalcogenide monolayers are dominated by excitons and trions. Here, we establish the dependence of these optical transitions on the disorder from hyperspectral imaging of h-BN encapsulated monolayer MoSe2. While both exciton and trion energies vary spatially, these two quantities are almost perfectly correlated, with spatial variation in the trion binding energy of only ∼0.18 meV. In contrast, variation in the energy splitting between the two lowest energy exciton states is one order of magnitude larger at ∼1.7 meV. Statistical analysis and theoretical modeling reveal that disorder results from dielectric and bandgap fluctuations, not electrostatic fluctuations. Our results shed light on disorder in high quality TMDC monolayers, its impact on optical transitions, and the many-body nature of excitons and trions.more » « less
An official website of the United States government
