skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Suppression of spin pumping at metal interfaces
An electrically conductive metal typically transmits or absorbs a spin current. Here, we report on evidence that interfacing two metal thin films can suppress spin transmission and absorption. We examine spin pumping in spin-source/spacer/spin-sink heterostructures, where the spacer consists of metallic Cu and Cr thin films. The Cu/Cr spacer largely suppresses spin pumping—i.e., neither transmitting nor absorbing a significant amount of spin current—even though Cu or Cr alone transmits a sizable spin current. The antiferromagnetism of Cr is not essential for the suppression of spin pumping, as we observe similar suppression with Cu/V spacers with V as a nonmagnetic analog of Cr. We speculate that diverse combinations of spin-transparent metals may form interfaces that suppress spin pumping, although the underlying mechanism remains unclear. Our work may stimulate a new perspective on spin transport in metallic multilayers.  more » « less
Award ID(s):
2105219 2003914
PAR ID:
10595029
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
APL Materials
Volume:
11
Issue:
10
ISSN:
2166-532X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Thin films of elemental metals play a very important role in modern electronic nano-devices as conduction pathways, spacer layers, spin-current generators/detectors, and many other important functionalities. In this work, by exploiting the chemistry of solid metal-organic source precursors, we demonstrate the molecular beam epitaxy synthesis of elemental Ir and Ru metal thin films. The synthesis of these metals is enabled by thermodynamic and kinetic selection of the metal phase as the metal-organic precursor decomposes on the substrate surface. Film growth under different conditions was studied using a combination of in situ and ex situ structural and compositional characterization techniques. The critical role of substrate temperature, oxygen reactivity, and precursor flux in tuning film composition and quality is discussed in the context of precursor adsorption, decomposition, and crystal growth. Computed thermodynamics quantifies the driving force for metal or oxide formation as a function of synthesis conditions and changes in chemical potential. These results indicate that bulk thermodynamics are a plausible origin for the formation of Ir metal at low temperatures, while Ru metal formation is likely mediated by kinetics. 
    more » « less
  2. Spin crossover complexes are a route toward designing molecular devices with a facile readout due to the change in conductance that accompanies the change in spin state. Because substrate effects are important for any molecular device, there are increased efforts to characterize the influence of the substrate on the spin state transition. Several classes of spin crossover molecules deposited on different types of surface, including metallic and non-metallic substrates, are comprehensively reviewed here. While some non-metallic substrates like graphite seem to be promising from experimental measurements, theoretical and experimental studies indicate that 2D semiconductor surfaces will have minimum interaction with spin crossover molecules. Most metallic substrates, such as Au and Cu, tend to suppress changes in spin state and affect the spin state switching process due to the interaction at the molecule–substrate interface that lock spin crossover molecules in a particular spin state or mixed spin state. Of course, the influence of the substrate on a spin crossover thin film depends on the molecular film thickness and perhaps the method used to deposit the molecular film. 
    more » « less
  3. null (Ed.)
    Abstract The manipulation of antiferromagnetic order in magnetoelectric Cr 2 O 3 using electric field has been of great interest due to its potential in low-power electronics. The substantial leakage and low dielectric breakdown observed in twinned Cr 2 O 3 thin films, however, hinders its development in energy efficient spintronics. To compensate, large film thicknesses (250 nm or greater) have been employed at the expense of device scalability. Recently, epitaxial V 2 O 3 thin film electrodes have been used to eliminate twin boundaries and significantly reduce the leakage of 300 nm thick single crystal films. Here we report the electrical endurance and magnetic properties of thin (less than 100 nm) single crystal Cr 2 O 3 films on epitaxial V 2 O 3 buffered Al 2 O 3 (0001) single crystal substrates. The growth of Cr 2 O 3 on isostructural V 2 O 3 thin film electrodes helps eliminate the existence of twin domains in Cr 2 O 3 films, therefore significantly reducing leakage current and increasing dielectric breakdown. 60 nm thick Cr 2 O 3 films show bulk-like resistivity (~ 10 12 Ω cm) with a breakdown voltage in the range of 150–300 MV/m. Exchange bias measurements of 30 nm thick Cr 2 O 3 display a blocking temperature of ~ 285 K while room temperature optical second harmonic generation measurements possess the symmetry consistent with bulk magnetic order. 
    more » « less
  4. Abstract Excitation of coherent high-frequency magnons (quanta of spin waves) is critical to the development of high-speed magnonic devices. Here we computationally demonstrate the excitation of coherent sub-terahertz (THz) magnons in ferromagnetic (FM) and antiferromagnetic (AFM) thin films by a photoinduced picosecond acoustic pulse. Analytical calculations are also performed to reveal the magnon excitation mechanism. Through spin pumping and spin-charge conversion, these magnons can inject sub-THz charge current into an adjacent heavy-metal film which in turn emits electromagnetic (EM) waves. Using a dynamical phase-field model that considers the coupled dynamics of acoustic waves, spin waves, and EM waves, we show that the emitted EM wave retains the spectral information of all the sub-THz magnon modes and has a sufficiently large amplitude for near-field detection. These predictions indicate that the excitation and detection of sub-THz magnons can be realized in rationally designed FM or AFM thin-film heterostructures via ultrafast optical-pump THz-emission-probe spectroscopy. 
    more » « less
  5. Spin-to-charge conversion and the reverse process are now critically important physical processes for a wide range of fundamental and applied studies in spintronics. Here, we experimentally demonstrate effective spin-to-charge conversion in thermally evaporated chromium thin films using the longitudinal spin Seebeck effect (LSSE). We present LSSE results measured near room temperature for Cr films with thicknesses from 2 to 11 nm, deposited at room temperature on bulk polycrystalline yttrium-iron-garnet (YIG) substrates. Comparison of the measured LSSE voltage, [Formula: see text], in Cr to a sputtered Pt film at the same nominal thickness grown on a matched YIG substrate shows that both films show comparably large spin-to-charge conversion. As previously shown for other forms of Cr, the LSSE signal for evaporated Cr/YIG shows the opposite sign compared to Pt, indicating that Cr has a negative spin Hall angle, [Formula: see text]. We also present measured charge resistivity, [Formula: see text], of the same evaporated Cr films on YIG. These values are large compared to Pt and comparable to [Formula: see text]-W at a similar thickness. Non-monotonic behavior of both [Formula: see text] and [Formula: see text] with film thickness suggests that spin-to-charge conversion in evaporated Cr, which we expect has a different strain state than previously investigated sputtered films, could be modified by spin density wave antiferromagnetism in Cr. 
    more » « less