Abstract Formation of energetic species at the surface of aqueous microdroplets, including abundant hydroxyl radicals, oxidation products, and ionized N2and O2gas, has been previously attributed to the high electric field at the droplet surface. Here, evidence for a new mechanism for electronic excitation involving electron emission from negatively charged water droplets is shown. Droplet evaporation can lead to the emission of ions and droplet fission, but unlike positively charged droplets, negatively charged droplets can also shed charge by electron emission. With nanoelectrospray, no anions or negatively charged droplets are produced with a positive electrospray potential. In contrast, abundant O2+•and H3O+(H2O) are formed with negative electrospray. When toluene vapor is introduced with negative electrospray, abundant toluene radical cations and fragments are produced. Both O2+•and toluene radical cations are produced with pneumatic nebulization. The electrons produced from evaporating negatively charged droplets can be accelerated by an external electric field in electrospray, or by the field generated between droplets with opposite polarities produced by pneumatic nebulization. This electron emission/ionization mechanism leads to electronic excitation >10 eV, and it may explain some of the surprising chemistries that were previously attributed to the high intrinsic electric field at the surface of aqueous droplets.
more »
« less
Are Hydroxyl Radicals Spontaneously Generated in Unactivated Water Droplets?
Abstract Spontaneous ionization/breakup of water at the surface of aqueous droplets has been reported with evidence ranging from formation of hydrogen peroxide and hydroxyl radicals, indicated by ions atm/z36 attributed to OH⋅‐H3O+or (H2O‐OH2)+⋅ as well as oxidation products of radical scavengers in mass spectra of water droplets formed by pneumatic nebulization. Here, aqueous droplets are formed both by nanoelectrospray, which produces highly charged nanodrops with initial diameters ~100 nm, and a vibrating mesh nebulizer, which produces 2–20 μm droplets that are initially less highly charged. The lifetimes of these droplets range from 10s of μs to 560 ms and the surface‐to‐volume ratios span ~100‐fold range. No ions atm/z36 are detected with pure water, nor are significant oxidation products for the two radical scavengers that were previously reported to be formed in high abundance. These and other results indicate that prior conclusions about spontaneous hydroxyl radical formation in unactivated water droplets are not supported by the evidence and that water appears to be stable at droplet surfaces over a wide range of droplet size, charge and lifetime.
more »
« less
- Award ID(s):
- 2203907
- PAR ID:
- 10595239
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Angewandte Chemie International Edition
- Volume:
- 63
- Issue:
- 51
- ISSN:
- 1433-7851
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract In charged water microdroplets, which occur in nature or in the lab upon ultrasonication or in electrospray processes, the thermodynamics for reactive chemistry can be dramatically altered relative to the bulk phase. Here, we provide a theoretical basis for the observation of accelerated chemistry by simulating water droplets of increasing charge imbalance to create redox agents such as hydroxyl and hydrogen radicals and solvated electrons. We compute the hydration enthalpy of OH−and H+that controls the electron transfer process, and the corresponding changes in vertical ionization energy and vertical electron affinity of the ions, to create OH•and H•reactive species. We find that at ~ 20 − 50% of the Rayleigh limit of droplet charge the hydration enthalpy of both OH−and H+have decreased by >50 kcal/mol such that electron transfer becomes thermodynamically favorable, in correspondence with the more favorable vertical electron affinity of H+and the lowered vertical ionization energy of OH−. We provide scaling arguments that show that the nanoscale calculations and conclusions extend to the experimental microdroplet length scale. The relevance of the droplet charge for chemical reactivity is illustrated for the formation of H2O2, and has clear implications for other redox reactions observed to occur with enhanced rates in microdroplets.more » « less
-
Hydroxyl radical (OH) oxidation of toluene produces ring-retaining products: cresol and benzaldehyde, and ring-opening products: bicyclic intermediate compounds and epoxides. Here, first- and later-generation OH oxidation products from cresol and benzaldehyde are identified in laboratory chamber experiments. For benzaldehyde, first-generation ring-retaining products are identified, but later-generation products are not detected. For cresol, low-volatility (saturation mass concentration, C* ∼ 3.5 × 104 − 7.7 × 10−3 µg m−3), first- and later-generation ring-retaining products are identified. Subsequent OH addition to the aromatic ring of o-cresol leads to compounds such as hydroxy, dihydroxy, and trihydroxy methyl benzoquinones and dihydroxy, trihydroxy, tetrahydroxy, and pentahydroxy toluenes. These products are detected in the gas phase by chemical ionization mass spectrometry (CIMS) and in the particle phase using offline direct analysis in real-time mass spectrometry (DART-MS). Our data suggest that the yield of trihydroxy toluene from dihydroxy toluene is substantial. While an exact yield cannot be reported as authentic standards are unavailable, we find that a yield for trihydroxy toluene from dihydroxy toluene of ∼ 0.7 (equal to the reported yield of dihydroxy toluene from o-cresol; Olariu et al., 2002) is consistent with experimental results for o-cresol oxidation under low-NO conditions. These results suggest that even though the cresol pathway accounts for only ∼ 20 % of the oxidation products of toluene, it is the source of a significant fraction (∼ 20–40 %) of toluene secondary organic aerosol (SOA) due to the formation of low-volatility products.more » « less
-
The reaction of aqueous suspensions of single-wall carbon nanotubes (SWCNTs) with UV-excited sodium hypochlorite has previously been reported to be an efficient route for doping nanotubes with oxygen atoms. We have investigated how this reaction system is affected by pH level, dissolved O2 content, and radical scavengers and traps. Products were characterized with near-IR fluorescence, Raman, and XPS spectroscopy. The reaction is greatly accelerated by removal of dissolved O2 and strongly suppressed by TEMPO, a radical trap. Alcohols added as radical scavengers alter the reaction efficiency and the product peak emission wavelengths. Photofunctionalization with 300 nm irradiation is substantially less efficient at pH levels low enough to protonate the OCl- ion to HOCl. We deduce that in mildly treated high pH samples, the main product is sp2 hybridized O-doped adducts formed by reaction of SWCNTs with atomic oxygen in its 3P (ground) level. By contrast, treatment under low pH conditions leads to sp3 hybridized SWCNT adducts formed by the addition of secondary radicals from reactions of OH and Cl. There is also evidence for additional photoreactions of product species under stronger irradiation. Researchers using photoexcited hypochlorite for SWCNT functionalization should be alert to the range of products and the sensitivity to reaction conditions in this system.more » « less
-
Environmentally ubiquitous manganese (Mn) oxides play important roles in geochemical element redox cycling. They can be formed by both biotic and abiotic Mn2+(aq) oxidation processes. We recently observed photochemically-assisted abiotic oxidation of Mn2+(aq) to δ-MnO2 nanosheets during nitrate photolysis. Mn2+ was mainly oxidized by superoxide radicals, while hydroxyl radicals (•OH) contributed little to Mn oxidation. However, unexpected abiotic Mn2+ oxidation was observed in the presence of tert-butyl alcohol (TBA) that was added to scavenge •OH. TBA, one of the most common •OH scavengers, has been thought to be able to completely scavenge •OH, leaving less reactive products that do not participate in further redox reactions in the system. However, we discovered that TBA was not an inert agent in scavenging •OH. Secondary peroxyl radicals (ROO•) were produced from the chain reactions between TBA and •OH, facilitating the oxidation of Mn2+ to MnO2(s). These findings can also be applied to other alcohol scavengers, such as methanol, ethanol, and propanol. In addition, ROO• can be produced by the reaction between •OH and unsaturated organic matter in natural environments. This study helps understand the occurrences of Mn oxides in the environment, and it provides new insights into the oxidation pathways of other heavy metals ions (Fe2+, As3+, and Cr3+) by ROO•.more » « less
An official website of the United States government

