skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 25, 2026

Title: Motion of a deformable droplet in a rectangular, straight channel
The motion and deformation of a neutrally buoyant drop in a rectangular channel experiencing a pressure-driven flow at a low Reynolds number has been investigated both experimentally and numerically. A moving-frame boundary-integral algorithm was used to simulate the drop dynamics, with a focus on steady-state drop velocity and deformation. Results are presented for drops of varying undeformed diameters relative to channel height ($$D/H$$), drop-to-bulk viscosity ratio ($$\lambda$$), capillary number ($$Ca$$, ratio of deforming viscous forces to shape-preserving interfacial tension) and initial position in the channel in a parameter space larger than considered previously. The general trend shows that the drop steady-state velocity decreases with increasing drop diameter and viscosity ratio but increases with increasing$$Ca$$. An opposite trend is seen for drops with small viscosity ratio, however, where the steady-state velocity increases with increasing$$D/H$$and can exceed the maximum background flow velocity. Experimental results verify theoretical predictions. A deformable drop with a size comparable to the channel height when placed off centre migrates towards the centreline and attains a steady state there. In general, a drop with a low viscosity ratio and high capillary number experiences faster cross-stream migration. With increasing aspect ratio, there is a competition between the effect of reduced wall interactions and lower maximum channel centreline velocity at fixed average velocity, with the former helping drops attain higher steady-state velocities at low aspect ratios, but the latter takes over at aspect ratios above approximately 1.5.  more » « less
Award ID(s):
2301910
PAR ID:
10595302
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Cambridge University Press
Date Published:
Journal Name:
Journal of Fluid Mechanics
Volume:
1009
ISSN:
0022-1120
Page Range / eLocation ID:
A61
Subject(s) / Keyword(s):
drops boundary integral methods microfluidics
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Lubrication theory is adapted to incorporate the large normal stresses that occur for order-one Deborah numbers,$$De$$, the ratio of the relaxation time to the residence time. Comparing with the pressure drop for a Newtonian viscous fluid with a viscosity equal to that of an Oldroyd-B fluid in steady simple shear, we find numerically a reduced pressure drop through a contraction and an increased pressure drop through an expansion, both changing linearly with$$De$$at high$$De$$. For a constriction, there is a smaller pressure drop that plateaus at high$$De$$. For a contraction, much of the change in pressure drop occurs in the stress relaxation in a long exit channel. An asymptotic analysis for high$$De$$, based on the idea that normal stresses are stretched by an accelerating flow in proportion to the square of the velocity, reveals that the large linear changes in pressure drop are due to higher normal stresses pulling the fluid through the narrowest gap. A secondary cause of the reduction is that the elastic shear stresses do not have time to build up to their steady-state equilibrium value while they accelerate through a contraction. We find for a contraction or expansion that the high$$De$$analysis works well for$$De>0.4$$. 
    more » « less
  2. Thin-film equations are utilised in many different areas of fluid dynamics when there exists a direction in which the aspect ratio can be considered small. We consider thin free films with Marangoni effects in the extensional flow regime, where velocity gradients occur predominantly along the film. In practice, because of the local deposition of surfactants or input of energy, asymmetric distributions of surfactants or surface tension more generally, are possible. Such examples include the surface of bubbles and the rupture of thin films. In this study, we consider the asymmetric thin-film equations for extensional flow with Marangoni effects. Concentrating on the case of small Reynolds number$$ Re $$, we study the deposition of insoluble surfactants on one side of a liquid sheet otherwise at rest and the resulting thinning and rupture of the sheet. The analogous problem with a uniformly thinning liquid sheet is also considered. In addition, the centreline deformation is discussed. In particular, we show analytically that if the surface tension isotherm$$\sigma = \sigma (\varGamma )$$is nonlinear (surface tension$$\sigma$$varies with surfactant concentration$$\varGamma$$), then accounting for top–bottom asymmetry leads to slower (faster) thinning and pinching if$$\sigma = \sigma (\varGamma )$$is convex (concave). The analytical progress reported in this paper allows us to discuss the production of satellite drops from rupture via Marangoni effects, which, if relevant to surface bubbles, would be an aerosol production mechanism that is distinct from jet drops and film drops. 
    more » « less
  3. An analysis is presented for the axisymmetric lubrication resistance between permeable spherical particles. Darcy's law is used to describe the flow in the permeable medium and a slip boundary condition is applied at the interface. The pressure in the near-contact region is governed by a non-local integral equation. The asymptotic limit$$K=k/a^{2} \ll 1$$is considered, where$$k$$is the arithmetic mean permeability, and$$a^{-1}=a^{-1}_{1}+a^{-1}_{2}$$is the reduced radius, and$$a_1$$and$$a_2$$are the particle radii. The formulation allows for particles with distinct particle radii, permeabilities and slip coefficients, including permeable and impermeable particles and spherical drops. Non-zero particle permeability qualitatively affects the axisymmetric near-contact motion, removing the classical lubrication singularity for impermeable particles, resulting in finite contact times under the action of a constant force. The lubrication resistance becomes independent of gap and attains a maximum value at contact$$F=6{\rm \pi} \mu a W K^{-2/5}\tilde {f}_c$$, where$$\mu$$is the fluid viscosity,$$W$$is the relative velocity and$$\tilde {f}_c$$depends on slip coefficients and weakly on permeabilities; for two permeable particles with no-slip boundary conditions,$$\tilde {f}_c=0.7507$$; for a permeable particle in near contact with a spherical drop,$$\tilde {f}_c$$is reduced by a factor of$$2^{-6/5}$$. 
    more » « less
  4. The motion of a freely rotating prolate spheroid in a simple shear flow of a dilute polymeric solution is examined in the limit of large particle aspect ratio,$$\kappa$$. A regular perturbation expansion in the polymer concentration,$$c$$, a generalized reciprocal theorem, and slender body theory to represent the velocity field of a Newtonian fluid around the spheroid are used to obtain the$$O(c)$$correction to the particle's orientational dynamics. The resulting dynamical system predicts a range of orientational behaviours qualitatively dependent upon$$c\, De$$($$De$$is the imposed shear rate times the polymer relaxation time) and$$\kappa$$and quantitatively on$$c$$. At a small but finite$$c\, De$$, the particle spirals towards a limit cycle near the vorticity axis for all initial conditions. Upon increasing$$\kappa$$, the limit cycle becomes smaller. Thus, ultimately the particle undergoes a periodic motion around and at a small angle from the vorticity axis. At moderate$$c\, De$$, a particle starting near the flow–gradient plane departs it monotonically instead of spirally, as this plane (a limit cycle at smaller$$c\, De$$) obtains a saddle and an unstable node. The former is close to the flow direction. Upon further increasing$$c\, De$$, the saddle node changes to a stable node. Therefore, depending upon the initial condition, a particle may either approach a periodic orbit near the vorticity axis or obtain a stable orientation near the flow direction. Upon further increasing$$c\, De$$, the limit cycle near the vorticity axis vanishes, and the particle aligns with the flow direction for all starting orientations. 
    more » « less
  5. Electrophoresis is the motion of a charged colloidal particle in an electrolyte under an applied electric field. The electrophoretic velocity of a spherical particle depends on the dimensionless electric field strength$$\beta =a^*e^*E_\infty ^*/k_B^*T^*$$, defined as the ratio of the product of the applied electric field magnitude$$E_\infty ^*$$and particle radius$$a^*$$, to the thermal voltage$$k_B^*T^*/e^*$$, where$$k_B^*$$is Boltzmann's constant,$$T^*$$is the absolute temperature, and$$e^*$$is the charge on a proton. In this paper, we develop a spectral element algorithm to compute the electrophoretic velocity of a spherical, rigid, dielectric particle, of fixed dimensionless surface charge density$$\sigma$$over a wide range of$$\beta$$. Here,$$\sigma =(e^*a^*/\epsilon ^*k_B^*T^*)\sigma ^*$$, where$$\sigma ^*$$is the dimensional surface charge density, and$$\epsilon ^*$$is the permittivity of the electrolyte. For moderately charged particles ($$\sigma ={O}(1)$$), the electrophoretic velocity is linear in$$\beta$$when$$\beta \ll 1$$, and its dependence on the ratio of the Debye length ($$1/\kappa ^*$$) to particle radius (denoted by$$\delta =1/(\kappa ^*a^*)$$) agrees with Henry's formula. As$$\beta$$increases, the nonlinear contribution to the electrophoretic velocity becomes prominent, and the onset of this behaviour is$$\delta$$-dependent. For$$\beta \gg 1$$, the electrophoretic velocity again becomes linear in field strength, approaching the Hückel limit of electrophoresis in a dielectric medium, for all$$\delta$$. For highly charged particles ($$\sigma \gg 1$$) in the thin-Debye-layer limit ($$\delta \ll 1$$), our computations are in good agreement with recent experimental and asymptotic results. 
    more » « less