skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on May 1, 2026

Title: Emerging Technologies for Multiphoton Writing and Reading of Polymeric Architectures for Biomedical Applications
The rise in popularity of two-photon polymerization (TPP) as an additive manufacturing technique has impacted many areas of science and engineering, particularly those related to biomedical applications. Compared with other fabrication methods used for biomedical applications, TPP offers 3D, nanometer-scale fabrication dexterity (free-form). Moreover, the existence of turnkey commercial systems has increased accessibility. In this review, we discuss the diversity of biomedical applications that have benefited from the unique features of TPP. We also present the state of the art in approaches for patterning and reading 3D TPP-fabricated structures. The reading process influences the fidelity for both in situ and ex situ characterization methods. We also review efforts to leverage machine learning to facilitate process control for TPP. Finally, we conclude with a discussion of both the current challenges and exciting opportunities for biomedical applications that lie ahead for this intriguing and emerging technology.  more » « less
Award ID(s):
2043168
PAR ID:
10595492
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Annual Reviews
Date Published:
Journal Name:
Annual Review of Biomedical Engineering
Volume:
27
Issue:
1
ISSN:
1523-9829
Page Range / eLocation ID:
129 to 155
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Two-photon polymerization (TPP) is an advanced 3D fabrication technique capable of creating features with submicron precision. A primary challenge in TPP lies in the facile and accurate characterization of fabrication quality, particularly for structures possessing complex internal features. In this study, we introduce an automated brightfield layerwise evaluation technique that enables a simple-to-implement approach forin situmonitoring and quality assessment of TPP-fabricated structures. Our approach relies on sequentially acquired brightfield images during the TPP writing process and using background subtraction and image processing to extract layered spatial features. We experimentally validate our method by printing a fibrous tissue scaffold and successfully achieve an overall system-adjusted fidelity of 87.5%in situ. Our method is readily adaptable in most TPP systems and can potentially facilitate high-quality TPP manufacturing of sophisticated microstructures. 
    more » « less
  2. Two‐photon polymerization (TPP) enables the fabrication of intricate 3D microstructures with submicron precision, offering significant potential in biomedical applications like tissue engineering. In such applications, to print materials and structures with defined mechanics, it is crucial to understand how TPP printing parameters impact the material properties in a physiologically relevant liquid environment. Herein, an experimental approach utilizing microscale tensile testing (μTT) for the systematic measurement of TPP‐fabricated microfibers submerged in liquid as a function of printing parameters is introduced. Using a diurethane dimethacrylate‐based resin, the influence of printing parameters on microfiber geometry is first explored, demonstrating cross‐sectional areas ranging from 1 to 36 μm2. Tensile testing reveals Young's moduli between 0.5 and 1.5 GPa and yield strengths from 10 to 60 MPa. The experimental data show an excellent fit with the Ogden hyperelastic polymer model, which enables a detailed analysis of how variations in writing speed, laser power, and printing path influence the mechanical properties of TPP microfibers. The μTT method is also showcased for evaluating multiple commercial resins and for performing cyclic loading experiments. Collectively, this study builds a foundation toward a standardized microscale tensile testing framework to characterize the mechanical properties of TPP printed structures. 
    more » « less
  3. Two-photon polymerization (TPP) uses nonlinear light interactions in photo-cross-linkable precursors to create high-resolution (∼100 nm) structures and high dimensional fidelity. Using a near-infrared light source in TPP results in less scattering and a higher penetration depth, making it attractive for creating biological models and tissue scaffolds. Due to unmatched flexibility and spatial resolution, they range from microvascular constructs to microneedles and stents. This review reviews the working principles and current inks used for TPP-printed constructs. We discuss the advantages of TPP over conventional additive manufacturing methods for tissue engineering, vascularized models, and other biomedical applications. This review provides a short recipe for selecting inks and photoinitiators for a desired structure. 
    more » « less
  4. Abstract Engineered living systems (ELSs) represent purpose‐driven assemblies of living components, encompassing cells, biomaterials, and active agents, intricately designed to fulfill diverse biomedical applications. Gelatin and its derivatives have been used extensively in ELSs owing to their mature translational pathways, favorable biological properties, and adjustable physicochemical characteristics. This review explores the intersection of gelatin and its derivatives with fabrication techniques, offering a comprehensive examination of their synergistic potential in creating ELSs for various applications in biomedicine. It offers a deep dive into gelatin, including its structures and production, sources, processing, and properties. Additionally, the review explores various fabrication techniques employing gelatin and its derivatives, including generic fabrication techniques, microfluidics, and various 3D printing methods. Furthermore, it discusses the applications of ELSs based on gelatin in regenerative engineering as well as in cell therapies, bioadhesives, biorobots, and biosensors. Future directions and challenges in gelatin fabrication are also examined, highlighting emerging trends and potential areas for improvements and innovations. In summary, this comprehensive review underscores the significance of gelatin‐based ELSs in advancing biomedical engineering and lays the groundwork for guiding future research and developments within the field. 
    more » « less
  5. The implementation of two‐photon polymerization (TPP) in the microrobotics community has permitted the fabrication of complex 3D structures at the microscale, creating novel platforms with potential biomedical applications for minimizing procedure invasiveness and diagnosis accuracy. Although advanced functionalities for manipulation and drug delivery tasks have been explored, one remaining challenge is achieving improved visualization, identification, and accurate closed‐loop control of microscale robots. To enable this, distinguishable identifying and trackable features must be included on the microrobot. Toward this end, the construction of micro‐ and nanoscale patterns using TPP is demonstrated for the first time on microrobot surfaces with the intent of mimicking color‐expressing nanostructures present on beetles or butterflies. The patterns provide identification and tracking targets due to their vivid color expression under visible light. Helical and rectangular microrobots are designed with the topical patterns and further functionalized with magnetic materials to be externally actuated by magnetic fields. Vision‐based tracking of a 20 μm × 30 μm colored feature on a 100 μm‐long helical microrobot using a fixed angular position light source during microrobotic motion is shown. This versatile structural color patterning approach shows great potential for the visual differentiation of various microrobots and tracking for improved closed‐loop control. 
    more » « less