Several authors have studied homomorphisms from first homology groups of modular curves to$$K_2(X)$$, with$$X$$either a cyclotomic ring or a modular curve. These maps send Manin symbols in the homology groups to Steinberg symbols of cyclotomic or Siegel units. We give a new construction of these maps and a direct proof of their Hecke equivariance, analogous to the construction of Siegel units using the universal elliptic curve. Our main tool is a$$1$$-cocycle from$$\mathrm {GL}_2(\mathbb {Z})$$to the second$$K$$-group of the function field of a suitable group scheme over$$X$$, from which the maps of interest arise by specialization.
more »
« less
This content will become publicly available on May 13, 2026
Spectral decomposition and Siegel–Veech transforms for strata: the case of marked tori
Generalizing the well-known construction of Eisenstein series on the modular curves, Siegel–Veech transforms provide a natural construction of square-integrable functions on strata of differentials on Riemann surfaces. This space carries actions of the foliated Laplacian derived from the \mathrm{SL}_{2}(\mathbb{R})-action as well as various differential operators related to relative period translations.In the paper we give spectral decompositions for the stratum of tori with two marked points. This is a homogeneous space for a special affine group, which is not reductive and thus does not fall into well-studied cases of the Langlands program, but still allows to employ techniques from representation theory and global analysis. Even for this simple stratum, exhibiting all Siegel–Veech transforms requires novel configurations of saddle connections. We also show that the continuous spectrum of the foliated Laplacian is much larger than the space of Siegel–Veech transforms, as opposed to the case of the modular curve. This defect can be remedied by using instead a compound Laplacian involving relative period translations.
more »
« less
- Award ID(s):
- 2404705
- PAR ID:
- 10596075
- Publisher / Repository:
- European Mathematical Society Press
- Date Published:
- Journal Name:
- Journal of Spectral Theory
- Volume:
- 15
- Issue:
- 2
- ISSN:
- 1664-039X
- Page Range / eLocation ID:
- 895 to 959
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We consider the derivative \begin{document}$$ D\pi $$\end{document} of the projection \begin{document}$$ \pi $$\end{document} from a stratum of Abelian or quadratic differentials to Teichmüller space. A closed one-form \begin{document}$$ \eta $$\end{document} determines a relative cohomology class \begin{document}$$ [\eta]_\Sigma $$\end{document}, which is a tangent vector to the stratum. We give an integral formula for the pairing of \begin{document}$$ D\pi([\eta]_\Sigma) $$\end{document} with a cotangent vector to Teichmüller space (a quadratic differential). We derive from this a comparison between Hodge and Teichmüller norms, which has been used in the work of Arana-Herrera on effective dynamics of mapping class groups, and which may clarify the relationship between dynamical and geometric hyperbolicity results in Teichmüller theory.more » « less
-
Abstract Let$${{\mathcal {H}}}$$be a stratum of translation surfaces with at least two singularities, let$$m_{{{\mathcal {H}}}}$$denote the Masur-Veech measure on$${{\mathcal {H}}}$$, and let$$Z_0$$be a flow on$$({{\mathcal {H}}}, m_{{{\mathcal {H}}}})$$obtained by integrating a Rel vector field. We prove that$$Z_0$$is mixing of all orders, and in particular is ergodic. We also characterize the ergodicity of flows defined by Rel vector fields, for more general spaces$$({\mathcal L}, m_{{\mathcal L}})$$, where$${\mathcal L} \subset {{\mathcal {H}}}$$is an orbit-closure for the action of$$G = \operatorname {SL}_2({\mathbb {R}})$$(i.e., an affine invariant subvariety) and$$m_{{\mathcal L}}$$is the natural measure. These results are conditional on a forthcoming measure classification result of Brown, Eskin, Filip and Rodriguez-Hertz. We also prove that the entropy of$$Z_0$$with respect to any of the measures$$m_{{{\mathcal L}}}$$is zero.more » « less
-
In this paper, we propose a new class of operator factorization methods to discretize the integral fractional Laplacian \begin{document}$$ (- \Delta)^\frac{{ \alpha}}{{2}} $$\end{document} for \begin{document}$$ \alpha \in (0, 2) $$\end{document}. One main advantage is that our method can easily increase numerical accuracy by using high-degree Lagrange basis functions, but remain its scheme structure and computer implementation unchanged. Moreover, it results in a symmetric (multilevel) Toeplitz differentiation matrix, enabling efficient computation via the fast Fourier transforms. If constant or linear basis functions are used, our method has an accuracy of \begin{document}$$ {\mathcal O}(h^2) $$\end{document}, while \begin{document}$$ {\mathcal O}(h^4) $$\end{document} for quadratic basis functions with \begin{document}$ h $$\end{document} a small mesh size. This accuracy can be achieved for any \begin{document}$$ \alpha \in (0, 2) $$\end{document} and can be further increased if higher-degree basis functions are chosen. Numerical experiments are provided to approximate the fractional Laplacian and solve the fractional Poisson problems. It shows that if the solution of fractional Poisson problem satisfies \begin{document}$$ u \in C^{m, l}(\bar{ \Omega}) $$\end{document} for \begin{document}$$ m \in {\mathbb N} $$\end{document} and \begin{document}$$ 0 < l < 1 $$\end{document}, our method has an accuracy of \begin{document}$$ {\mathcal O}(h^{\min\{m+l, \, 2\}}) $$\end{document} for constant and linear basis functions, while \begin{document}$$ {\mathcal O}(h^{\min\{m+l, \, 4\}}) $$\end{document}$ for quadratic basis functions. Additionally, our method can be readily applied to approximate the generalized fractional Laplacians with symmetric kernel function, and numerical study on the tempered fractional Poisson problem demonstrates its efficiency.more » « less
-
Abstract Our previous multiscale graph basis dictionaries/graph signal transforms—Generalized Haar-Walsh Transform (GHWT); Hierarchical Graph Laplacian Eigen Transform (HGLET); Natural Graph Wavelet Packets (NGWPs); and their relatives—were developed for analyzing data recorded on vertices of a given graph. In this article, we propose their generalization for analyzing data recorded on edges, faces (i.e., triangles), or more generally$$\kappa $$ -dimensional simplices of a simplicial complex (e.g., a triangle mesh of a manifold). The key idea is to use the Hodge Laplacians and their variants for hierarchical partitioning of a set of$$\kappa $$ -dimensional simplices in a given simplicial complex, and then build localized basis functions on these partitioned subsets. We demonstrate their usefulness for data representation on both illustrative synthetic examples and real-world simplicial complexes generated from a co-authorship/citation dataset and an ocean current/flow dataset.more » « less
An official website of the United States government
