Abstract Ferromagnetic semiconductor Ga 1– x Mn x As 1– y P y thin films go through a metal–insulator transition at low temperature where electrical conduction becomes driven by hopping of charge carriers. In this regime, we report a colossal negative magnetoresistance (CNMR) coexisting with a saturated magnetic moment, unlike in the traditional magnetic semiconductor Ga 1– x Mn x As. By analyzing the temperature dependence of the resistivity at fixed magnetic field, we demonstrate that the CNMR can be consistently described by the field dependence of the localization length, which relates to a field dependent mobility edge. This dependence is likely due to the random environment of Mn atoms in Ga 1– x Mn x As 1– y P y which causes a random spatial distribution of the mobility that is suppressed by an increasing magnetic field. 
                        more » 
                        « less   
                    This content will become publicly available on March 1, 2026
                            
                            Off-state magnetoresistance in long-channel germanium Schottky-barrier MOSFETs
                        
                    
    
            An increasing magnetic field perpendicular to an undoped semiconductor surface at low temperature is known to strengthen the binding of localized electrons to stationary ions, as the wavefunction's tails evolve from exponential to Gaussian. It is also known that application of a high bias voltage to a depleted semiconductor can liberate bound charge and induce a large drop in electrical resistance. We connect these established results to experimental electrical transport measurements on off-state germanium Schottky-barrier metal–oxide–semiconductor field-effect transistor (MOSFETs) with an aluminum oxide insulating dielectric and platinum germanide contacts. We make measurements at the three distinct orientations of the magnetic field with respect to the substrate and the current. At 6 K, we observe sharp attenuation of current by more than 2 orders of magnitude, within 60 mT, at a crossover magnetic field perpendicular to the substrate. A 1 T magnetic field attenuates the current by more than 4 orders of magnitude. The strength of the attenuation and the value of the crossover field are controlled by both the gate–source and drain–source voltages. The attenuation is much weaker when the magnetic field is parallel to the current. Finally, we orient the magnetic field parallel to the substrate, but perpendicular to the current, allowing us to distinguish charge hopping at the oxide interface from charge hopping in the bulk. This large off-state magnetoresistance can be exploited for cryogenic magnetic- and photo-detection, and for high-bias, low-leakage MOSFETs. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2409911
- PAR ID:
- 10612927
- Publisher / Repository:
- AIP
- Date Published:
- Journal Name:
- Applied Physics Letters
- Volume:
- 126
- Issue:
- 9
- ISSN:
- 0003-6951
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Thermoelectric materials, capable of converting temperature gradients into electrical power, have been traditionally limited by a trade‐off between thermopower and electrical conductivity. This study introduces a novel, broadly applicable approach that enhances both the spin‐driven thermopower and the thermoelectric figure‐of‐merit (zT) without compromising electrical conductivity, using temperature‐driven spin crossover. Our approach, supported by both theoretical and experimental evidence, is demonstrated through a case study of chromium doped‐manganese telluride, but is not confined to this material and can be extended to other magnetic materials. By introducing dopants to create a high crystal field and exploiting the entropy changes associated with temperature‐driven spin crossover, we achieved a significant increase in thermopower, by approximately 136 μV K−1, representing more than a 200% enhancement at elevated temperatures within the paramagnetic domain. Our exploration of the bipolar semiconducting nature of these materials reveals that suppressing bipolar magnon/paramagnon‐drag thermopower is key to understanding and utilizing spin crossover‐driven thermopower. These findings, validated by inelastic neutron scattering, X‐ray photoemission spectroscopy, thermal transport, and energy conversion measurements, shed light on crucial material design parameters. We provide a comprehensive framework that analyzes the interplay between spin entropy, hopping transport, and magnon/paramagnon lifetimes, paving the way for the development of high‐performance spin‐driven thermoelectric materials.more » « less
- 
            The precise control of direct current (dc) magnetic fields is crucial in a wide range of experimental platforms, from ultracold quantum gases and nuclear magnetic resonance to precision measurements. In each of these cases, the Zeeman effect causes quantum states to shift in energy as a function of the magnetic field. The development of low-noise current sources is essential because electromagnets are the preferred tool to dynamically control the magnetic field. Here, we describe an ultra-low noise bipolar current source using pairs of complementary n- and p-channel metal–oxide–semiconductor field-effect transistors controlled by zero-drift operational amplifiers. Our source has a 90 kHz inherent bandwidth and provides current from −20 to 20 A with noise (0.1 Hz to 100 kHz) of 140 µA at ±20 A.more » « less
- 
            We present magnetic characterization, charge resistivity, and optical photoluminescence measurements on amorphous yttrium iron oxide thin films (a-Y–Fe–O), with supporting comparisons to amorphous germanium (a-Ge) films. We measured magnetic properties with both SQUID magnetometry and polarized neutron reflectometry. These results not only confirm that a-Y–Fe–O is a disordered magnetic material with strong predominantly antiferromagnetic exchange interactions and a high degree of frustration, but also that it is best understood electrically as a disordered semiconductor. As with amorphous germanium, a-Y–Fe–O obeys expectations for variable-range hopping through localized electron states over a wide range of temperature. We also clarify the consequences of charge transport through such a semiconducting medium for non-local voltage measurements intended to probe spin transport in nominally insulating magnetic materials. We further compare non-local resistance measurements made with “quasi-dc” automated current reversal to ac measurements made with a lock-in amplifier. These show that the “quasi-dc” measurement has an effective ac current excitation with frequency up to approximately 22 Hz, and that this effective ac excitation can cause artifacts in these measurements including incorrect sign of the non-local resistance. This comprehensive investigation of non-local resistance measurements in a-Y–Fe–O shows no evidence of spin transport on micrometer length scales, which is contrary to our original work, and in line with more recent investigations by other groups.more » « less
- 
            Understanding the thermal stability and degradation mechanism of β-Ga2O3 metal-oxide-semiconductor field-effect transistors (MOSFETs) is crucial for their high-power electronics applications. This work examines the high temperature performance of the junctionless lateral β-Ga2O3 FinFET grown on a native β-Ga2O3 substrate, fabricated by metal-assisted chemical etching with Al2O3 gate oxide and Ti/Au gate metal. The thermal exposure effect on threshold voltage (Vth), subthreshold swing (SS), hysteresis, and specific on-resistance (Ron,sp), as a function of temperature up to 298 °C, is measured and analyzed. SS and Ron,sp increased with increasing temperatures, similar to the planar MOSFETs, while a more severe negative shift of Vth was observed for the high aspect-ratio FinFETs here. Despite employing a much thicker epilayer (∼2 μm) for the channel, the high temperature performance of Ion/Ioff ratios and SS of the FinFET in this work remains comparable to that of the planar β-Ga2O3 MOSFETs reported using epilayers ∼10–30× thinner. This work paves the way for further investigation into the stability and promise of β-Ga2O3 FinFETs compared to their planar counterparts.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
