skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 3, 2025

Title: Statistical and Computational Efficiency for Smooth Tensor Estimation with Unknown Permutations
We consider the problem of structured tensor denoising in the presence of unknown permutations. Such data problems arise commonly in recommendation systems, neuroimaging, community detection, and multiway comparison applications. Here, we develop a general family of smooth tensor models up to arbitrary index permutations; the model incorporates the popular tensor block models and Lipschitz hypergraphon models as special cases. We show that a constrained least-squares estimator in the block-wise polynomial family achieves the minimax error bound. A phase transition phenomenon is revealed with respect to the smoothness threshold needed for optimal recovery. In particular, we find that a polynomial of degree up to (𝑚−2)⁢(𝑚+1)/2 is sufficient for accurate recovery of order-m tensors, whereas higher degrees exhibit no further benefits. This phenomenon reveals the intrinsic distinction for smooth tensor estimation problems with and without unknown permutations. Furthermore, we provide an efficient polynomial-time Borda count algorithm that provably achieves the optimal rate under monotonicity assumptions. The efficacy of our procedure is demonstrated through both simulations and Chicago crime data analysis. Supplementary materials for this article are available online, including a standardized description of the materials available for reproducing the work.  more » « less
Award ID(s):
2141865 2023239
PAR ID:
10597686
Author(s) / Creator(s):
;
Publisher / Repository:
Taylor and Francis
Date Published:
Journal Name:
Journal of the American Statistical Association
ISSN:
0162-1459
Page Range / eLocation ID:
1 to 14
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We consider the problem of multiway clus- tering in the presence of unknown degree heterogeneity. Such data problems arise commonly in applications such as recom- mendation system, neuroimaging, commu- nity detection, and hypergraph partitions in social networks. The allowance of de- gree heterogeneity provides great flexibility in clustering models, but the extra com- plexity poses significant challenges in both statistics and computation. Here, we de- velop a degree-corrected tensor block model with estimation accuracy guarantees. We present the phase transition of clustering performance based on the notion of an- gle separability, and we characterize three signal-to-noise regimes corresponding to dif- ferent statistical-computational behaviors. In particular, we demonstrate that an intrin- sic statistical-to-computational gap emerges only for tensors of order three or greater. Further, we develop an efficient polynomial- time algorithm that provably achieves exact clustering under mild signal conditions. The efficacy of our procedure is demonstrated through both simulations and analyses of Peru Legislation dataset. 
    more » « less
  2. We consider the problem of multiway clustering in the presence of unknown degree​ ​heterogeneity. Such data problems arise commonly in applications such as recommendation systems, neuroimaging, community detection, and hypergraph partitions​ ​in social networks. The allowance of degree heterogeneity provides great flexibility​ ​in clustering models, but the extra complexity poses significant challenges in both​ ​statistics and computation. Here, we develop a degree-corrected tensor block model​ ​with estimation accuracy guarantees. We present the phase transition of clustering​ ​performance based on the notion of angle separability, and we characterize three​ ​signal-to-noise regimes corresponding to different statistical-computational behaviors.​ ​In particular, we demonstrate that an intrinsic statistical-to-computational gap emerges​ ​only for tensors of order three or greater.​ ​Further, we develop an efficient polynomial time algorithm that provably achieves exact​ ​clustering under mild signal conditions. The​ ​efficacy of our procedure is demonstrated​ ​through both simulations and analyses of​ ​Peru Legislation dataset. 
    more » « less
  3. The authors provide the first tight sample complexity bounds for shadow tomography and classical shadows in the regime where the target error is below some sufficiently small inverse polynomial in the dimension of the Hilbert space. Specifically, they present a protocol that, given any 𝑚 ∈ 𝑁 m∈N and 𝜖 ≤ 𝑂 ( 𝑑 − 1 / 2 ) ϵ≤O(d −1/2 ), measures 𝑂 ( log ⁡ ( 𝑚 ) / 𝜖 2 ) O(log(m)/ϵ 2 ) copies of an unknown mixed state 𝜌 ∈ 𝐶 𝑑 × 𝑑 ρ∈C d×d and outputs a classical description of 𝜌 ρ. This description can then be used to estimate any collection of 𝑚 m observables to within additive accuracy 𝜖 ϵ. Previously, even for the simpler case of shadow tomography where observables are known in advance, the best known rates either scaled benignly but suboptimally in all of 𝑚 , 𝑑 , 𝜖 m,d,ϵ, or scaled optimally in 𝜖 , 𝑚 ϵ,m but included additional polynomial factors in 𝑑 d. Interestingly, the authors also show via dimensionality reduction that one can rescale 𝜖 ϵ and 𝑑 d to reduce to the regime where 𝜖 ≤ 𝑂 ( 𝑑 − 1 / 2 ) ϵ≤O(d −1/2 ). Their algorithm draws on representation-theoretic tools developed in the context of full state tomography. 
    more » « less
  4. A tensor network is a diagram that specifies a way to "multiply" a collection of tensors together to produce another tensor (or matrix). Many existing algorithms for tensor problems (such as tensor decomposition and tensor PCA), although they are not presented this way, can be viewed as spectral methods on matrices built from simple tensor networks. In this work we leverage the full power of this abstraction to design new algorithms for certain continuous tensor decomposition problems. An important and challenging family of tensor problems comes from orbit recovery, a class of inference problems involving group actions (inspired by applications such as cryo-electron microscopy). Orbit recovery problems over finite groups can often be solved via standard tensor methods. However, for infinite groups, no general algorithms are known. We give a new spectral algorithm based on tensor networks for one such problem: continuous multi-reference alignment over the infinite group SO(2). Our algorithm extends to the more general heterogeneous case. 
    more » « less
  5. One of the key problems in tensor network based quantum circuit simulation is the construction of a contraction tree which minimizes the cost of the simulation, where the cost can be expressed in the number of operations as a proxy for the simulation running time. This same problem arises in a variety of application areas, such as combinatorial scientific computing, marginalization in probabilistic graphical models, and solving constraint satisfaction problems. In this paper, we reduce the computationally hard portion of this problem to one of graph linear ordering, and demonstrate how existing approaches in this area can be utilized to achieve results up to several orders of magnitude better than existing state of the art methods for the same running time. To do so, we introduce a novel polynomial time algorithm for constructing an optimal contraction tree from a given order. Furthermore, we introduce a fast and high quality linear ordering solver, and demonstrate its applicability as a heuristic for providing orderings for contraction trees. Finally, we compare our solver with competing methods for constructing contraction trees in quantum circuit simulation on a collection of randomly generated Quantum Approximate Optimization Algorithm Max Cut circuits and show that our method achieves superior results on a majority of tested quantum circuits. Reproducibility: Our source code and data are available at https://github.com/cameton/HPEC2022_ContractionTrees. 
    more » « less