skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on March 26, 2026

Title: Green Building Design Studio Game Development with Parametric Simulation and ML Prediction for Green Building Education in Rural Middle Schools
Abstract. Green building education prioritizes workforce development to promote high-performing and net zero building adoptions. However, the concept and principles of net zero and building energy have rarely been reflected in the curriculum and instruction of K-12 science education in the United States. This research investigates the design and development of simulation game development paired with a science curriculum to teach green building design and energy principles in rural middle schools. This paper presents our education game development aligned with the newly developed curriculum unit that will be distributed to science classrooms. Green Building Design Studio game was developed from the following research phases: (i) Game scenario design, (ii) Energy simulation module creation, (iii) ML-prediction model development, and (iv) Cost estimation module creation. In ML prediction, the XGBoost algorithm demonstrated reliable performance and accuracy. The game was tested in a 3-day science immersion summer camp with twenty-seven middle school students in Missouri. The research team observed that the game enabled students to iterate de sign changes and promptly see the updated results from the dashboard. This paper describes the game development framework, methods and tools for energy simulation, ML prediction, and game development, as well as the findings and challenges.  more » « less
Award ID(s):
2201204
PAR ID:
10599179
Author(s) / Creator(s):
; ; ; ; ;
Editor(s):
CAADRIA
Publisher / Repository:
ARCHITECTURAL INFORMATICS, Proceedings of the 30th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA) 2025, Volume 1, 479-488. © 2025 and published by the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA), Hong Kong
Date Published:
Subject(s) / Keyword(s):
Green building education game-based learning energy simulation ML prediction
Format(s):
Medium: X
Location:
https://www.caadria2025.org/paper-sessions
Sponsoring Org:
National Science Foundation
More Like this
  1. The research investigates the design and development of a serious game to teach green building design and energy literacy in rural middle schools in the United States. The paper presents a pilot study, education mini-game development integrated with parametric BIM and energy simulations. The game scenario was built on the developed science curriculum modules in our funded research, teaching building energy technologies such as daylighting, artificial lighting, window configurations, building materials, solar panels, etc. The mini-game, Illumi’s World, presents a baseline science lab and a media library of typical public schools in the United States. The players have the opportunity to improve energy literacy in several ways: manipulating the building configurations and the energy options, reviewing energy costs and emission level changes, and monitoring the performance from the game dashboards. This paper presents background theory, curriculum design, the mini-game development framework, methods and tools for energy simulation and BIM visualization, and the findings and challenges. 
    more » « less
  2. null (Ed.)
    Teaching Engineering Concepts to Harness Future Innovators and Technologists (TECHFIT) was an NSF-funded science, technology, engineering, and math (STEM) project (DRL-1312215) (Harriger B. , Harriger, Flynn, & Flynn, 2013) that included a professional development (PD) program for teachers and an afterschool program for students. Curriculum and Assessment Design to Study the Development of Motivation and Computational Thinking for Middle School Students across Three Learning Contexts is an NSF-funded research project (DRL-1640178) (Harriger A. , Harriger, Parker, & Li, 2016) that examines the impact of delivering the TECHFIT curriculum to middle school students in three different contexts: afterschool program, in-school class, core class module. Thus far, the new project has deployed TECHFIT using the first two contexts, both of which use the entire TECHFIT curriculum. The goal of the TECHFIT curriculum is to spark interest in STEM and computational thinking (CT) in middle school students. The curriculum employs two computer programming tools as well as physical computing to introduce participants to STEM and CT. It also includes use of brain blasts to engage participants in a wide variety of physical activity throughout the instruction as well as to enrich their imaginations with different ways to make movement fun. This paper focuses on the process of exergame development using TECHFIT tools as a way to support CT skills development. The process is illustrated using a complete example from inception to a picture of teachers testing the working, physical exergame. 
    more » « less
  3. The demand is growing for a populace that is AI literate; such literacy centers on enabling individuals to evaluate, collaborate with, and effectively use AI. Because the middle school years are a critical time for developing youths’ perceptions and dispositions toward STEM, creating engaging AI learning experiences for middle grades students (ages 11 to 14) is paramount. The need for providing enhanced access to AI learning opportunities is especially pronounced in rural areas, which are typically underserved and underresourced. Inspired by prior research that game design holds significant potential for cultivating student interest and knowledge in computer science, we are designing, developing, and iteratively refining an AI-centered game development environment that infuses AI learning into game design activities. In this work, we review design principles for game design interventions focused on middle grades computer science education and explore how to introduce AI learning experiences into interactive game-design activities. We also discuss results from our initial co-design sessions with middle grades students and teachers in rural communities. 
    more » « less
  4. Grand Challenges (GCs) are complex, global, and multifaceted science and societal problems such as climate change, viral pandemics, loss of biodiversity, and quests for new energy sources. In this article, we advance a position, based on current research and theory, that GCs should be a prominent feature of the science curriculum. This move towards a GC-based curriculum challenges the positioning of canonical scientific concepts as the central organising feature of the curriculum, which is typically the default position of most science education programmes. A GC-based curriculum can create natural avenues for students to learn science, develop an interest in science, and build media and information literacy skills to become informed agents of change. Design principles, which help to define what a GC curriculum can look like and guide creation of GC materials, are introduced. These design principles call for the GC curriculum to be contextualised in global issues with local connections, culturally responsive, practice oriented, attentive to student voice, and coherent within and across units. Examples are provided to demonstrate how these design principles are implemented in a sample curriculum. 
    more » « less
  5. Abstract STEAM education is an educational approach of interdisciplinary teaching of science, technology, engineering, art, and mathematics. STEAM education, however, is often viewed as only including art elements into STEM teaching. Without true integration of the disciplines in STEAM curricula, students rarely are exposed to the connection among disciplines, and self-identify as solely scientists, artists, or technophiles. STEAM curricula also infrequently integrate design, which promotes creativity and innovation. Effective STEAM curriculum and practices are needed to prepare students to face 21st century challenges and work demands. We designed a high school STEAM educational module that integrated plant science, design, and emergent technologies through the creation of 3D models of plants and augmented and virtual reality (AVR) experiences and investigated its impact on students’ understanding of the intersection of art and design with science, learning and skills gains, and interests in STEAM subjects and careers. The module used a project-based learning approach that relied on student teamwork and facilitation by educators. In this 3D plant modeling module, students: (1) investigated plants under research at a plant science research center, (2) designed and created 3D models of those plants, (3) learned about the application of 3D modeling in AVR platforms, and (4) disseminated project results. We used qualitative and quantitative research methods both before and after the implementation of the model to assess the impact of the 3D modeling module. Student responses revealed that approximately half of the students had a good understanding of the intersection of art and design with science prior to the implementation of the module, while the other half gained this understanding after completing their projects. Students saw art and design playing a role in science mainly by facilitating communication and further understanding and fostering new ideas. They also reported that science influenced art and design through the artistic creation process. The most common learning gains were in plant science and 3D modeling, with 35% and 20% of the students reporting these themes only after completing their projects, respectively. The skill gains most cited were research, teamwork, and communication skills. Over 25% of the students reported these skill gains only after the completion of their projects. Paired comparisons of survey responses indicated a significant increase in students’ interest in science, mathematics, and design subjects after they completed their projects. At the end of the module, 40% of the students were more interested in STEAM careers. Another 13% of the students indicated they already had an interest in STEAM careers before beginning the module. Our findings indicate that our STEAM module effectively integrated science, art, design, and technology, enhancing student literacy in these fields, and providing students with essential 21st century skills. The module led to interdisciplinary learning and development of interest in STEAM subjects and careers. The combination of pedagogical strategies used in our module for active, collaborative, authentic, and meaningful learning exemplifies an effective STEAM curriculum with valuable instructional tools for educators, inspiring new ways of teaching and learning, contributing to the practice and applications in STEAM education. 
    more » « less