A bstract In celestial holography, four-dimensional scattering amplitudes are considered as two-dimensional conformal correlators of a putative two-dimensional celestial conformal field theory (CCFT). The simplest way of converting momentum space amplitudes into CCFT correlators is by taking their Mellin transforms with respect to light-cone energies. For massless particles, like gluons, however, such a construction leads to three-point and four-point correlators that vanish everywhere except for a measure zero hypersurface of celestial coordinates. This is due to the four-dimensional momentum conservation law that constrains the insertion points of the operators associated with massless particles. These correlators are reminiscent of Coulomb gas correlators that, in the absence of background charges, vanish due to charge conservation. We supply the background momentum by coupling Yang-Mills theory to a background dilaton field, with the (complex) dilaton source localized on the celestial sphere. This picture emerges from the physical interpretation of the solutions of the system of differential equations discovered by Banerjee and Ghosh. We show that the solutions can be written as Mellin transforms of the amplitudes evaluated in such a dilaton background. The resultant three-gluon and four-gluon amplitudes are single-valued functions of celestial coordinates enjoying crossing symmetry and all other properties expected from standard CFT correlators. We use them to extract OPEs and compare them with the OPEs extracted from multi-gluon celestial amplitudes without a dilaton background. We perform the conformal block decomposition of the four-gluon single-valued correlator and determine the dimensions, spin and group representations of the entire primary field spectrum of the Yang-Mills sector of CCFT.
more »
« less
Differential equations for Carrollian amplitudes
Differential equations are powerful tools in the study of correlation functions in conformal field theories (CFTs). Carrollian amplitudes behave as correlation functions of Carrollian CFT that holographically describes asymptotically flat spacetime. We derive linear differential equations satisfied by Carrollian MHV gluon and graviton amplitudes. We obtain non-distributional solutions for both the gluon and graviton cases. We perform various consistency checks for these differential equations, including compatibility with conformal Carrollian symmetries.
more »
« less
- Award ID(s):
- 2209903
- PAR ID:
- 10599464
- Publisher / Repository:
- Springer
- Date Published:
- Journal Name:
- Journal of High Energy Physics
- Volume:
- 2024
- Issue:
- 9
- ISSN:
- 1029-8479
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A<sc>bstract</sc> We analyze correlation functions of SU(k) × SU(2)Fflavor currents in a family of three-dimensional$$ \mathcal{N} $$ = 4 superconformal field theories, combining analytic bootstrap methods with input from supersymmetric localization. Via holographic duality, we extract gluon and graviton scattering amplitudes of M-theory on AdS4×S7/ℤkwhich contains a ℂ2/ℤkorbifold singularity. From these results, we derive aspects of the effective description of M-theory on the orbifold singularity beyond its leading low energy limit. We also determine a threshold correction to the holographic correlator from the combined contribution of two-loop gluon and tree-level bulk graviton exchange.more » « less
-
null (Ed.)A bstract Multi-collinear factorization limits provide a window to study how locality and unitarity of scattering amplitudes can emerge dynamically from celestial CFT, the conjectured holographic dual to gauge and gravitational theories in flat space. To this end, we first use asymptotic symmetries to commence a systematic study of conformal and Kac-Moody descendants in the OPE of celestial gluons. Recursive application of these OPEs then equips us with a novel holographic method of computing the multi-collinear limits of gluon amplitudes. We perform this computation for some of the simplest helicity assignments of the collinear particles. The prediction from the OPE matches with Mellin transforms of the expressions in the literature to all orders in conformal descendants. In a similar vein, we conclude by studying multi-collinear limits of graviton amplitudes in the leading approximation of sequential double-collinear limits, again finding a consistency check against the leading order OPE of celestial gravitons.more » « less
-
null (Ed.)A bstract Conformally soft gluons are conserved currents of the Celestial Conformal Field Theory (CCFT) and generate a Kac-Moody algebra. We study celestial amplitudes of Yang-Mills theory, which are Mellin transforms of gluon amplitudes and take the double soft limit of a pair of gluons. In this manner we construct the Sugawara energy-momentum tensor of the CCFT. We verify that conformally soft gauge bosons are Virasoro primaries of the CCFT under the Sugawara energy-momentum tensor. The Sugawara tensor though does not generate the correct conformal transformations for hard states. In Einstein-Yang- Mills theory, we consider an alternative construction of the energy-momentum tensor, similar to the double copy construction which relates gauge theory amplitudes with gravity ones. This energy momentum tensor has the correct properties to generate conformal transformations for both soft and hard states. We extend this construction to supertranslations.more » « less
-
A bstract Modular graph functions (MGFs) are SL(2 , ℤ)-invariant functions on the Poincaré upper half-plane associated with Feynman graphs of a conformal scalar field on a torus. The low-energy expansion of genus-one superstring amplitudes involves suitably regularized integrals of MGFs over the fundamental domain for SL(2 , ℤ). In earlier work, these integrals were evaluated for all MGFs up to two loops and for higher loops up to weight six. These results led to the conjectured uniform transcendentality of the genus-one four-graviton amplitude in Type II superstring theory. In this paper, we explicitly evaluate the integrals of several infinite families of three-loop MGFs and investigate their transcendental structure. Up to weight seven, the structure of the integral of each individual MGF is consistent with the uniform transcendentality of string amplitudes. Starting at weight eight, the transcendental weights obtained for the integrals of individual MGFs are no longer consistent with the uniform transcendentality of string amplitudes. However, in all the cases we examine, the violations of uniform transcendentality take on a special form given by the integrals of triple products of non-holomorphic Eisenstein series. If Type II superstring amplitudes do exhibit uniform transcendentality, then the special combinations of MGFs which enter the amplitudes must be such that these integrals of triple products of Eisenstein series precisely cancel one another. Whether this indeed is the case poses a novel challenge to the conjectured uniform transcendentality of genus-one string amplitudes.more » « less
An official website of the United States government

