skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 1, 2026

Title: Building and Sharing Ocean Sciences Capacity Through Project-Based Learning
The challenges facing the ocean and its resources have become increasingly complex and transboundary, requiring coordinated efforts for effective management and sustainable use. However, this coordination is currently hindered by the uneven distribution of capacity and equipment, particularly in developing regions. This article discusses project-based learning (PBL) as a pathway to transferring and sharing capacity in global ocean sciences. It highlights a successful PBL program, as well as challenges encountered and lessons learned. Addressing these obstacles is crucial for ensuring equity in solving issues that impact the ocean.  more » « less
Award ID(s):
2318309
PAR ID:
10599683
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Corporate Creator(s):
Publisher / Repository:
The Oceanography Society
Date Published:
Journal Name:
Oceanography
ISSN:
1042-8275
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Capacity sharing in the ocean sciences is essential for addressing pressing environmental challenges and fostering sustainable stewardship of marine ecosystems. This article focuses on three important capacity-sharing programs operating in Africa: Early Career Ocean Professionals (ECOP) Africa, Citizen Observation of Local Litter in Coastal Ecosystems (COLLECT) (a project of the Partnership for Observation of the Global Ocean), and Mundus Maris Africa. ECOP Africa, a pioneering platform for early career ocean professionals, emphasizes mentorship, training, and knowledge exchange to empower young marine scientists across the continent. Through dynamic programs and events, ECOP Africa is catalyzing interdisciplinary collaboration and inspiring the next generation of ocean leaders. Similarly, COLLECT leverages citizen science to tackle plastic pollution in coastal environments. By training secondary school students as “citizen scientists,” COLLECT has not only generated critical data on the distribution and abundance of coastal debris but also fostered environmental awareness and local engagement. These initiatives demonstrate the power of inclusive, community-driven approaches to capacity sharing in the ocean sciences. They highlight the transformative potential of combining open science, education, and international collaboration to address global challenges such as plastic pollution and climate change while empowering local communities to take active roles in preserving their marine environments. 
    more » « less
  2. Problem-based learning (PBL) is recognized as a pedagogical approach that is well-suited to preparing engineering students for the realities of the profession, but there are persistent implementation challenges that serve as barriers to broad adoption. This systematic literature review focuses on three facets of PBL – design, facilitation, and assessment – in search of operational guidelines for engineering faculty considering a transition to PBL. Findings led to two broad conclusions. First, there is a need for research on methods to support engineering faculty in problem design. Second, while current research provides thorough support for PBL facilitation and suggestions for assessment, there is a need for additional research to evaluate the efficacy of the various models of facilitation and assessment suggested by the literature. 
    more » « less
  3. null (Ed.)
    Abstract Problem-based learning (PBL) has been effectively used within BME education, though there are several challenges in its implementation within courses with larger enrollments. Furthermore, the sudden transition to online learning from the COVID-19 pandemic introduced additional challenges in creating a similar PBL experience in an online environment. Online constrained PBL was implemented through asynchronous modules and synchronous web conferencing with rotating facilitators. Overall, facilitators perceived web conferencing facilitation to be similar to in-person, but noted that students were more easily “hidden” or distracted. Students did not comment on web conferencing facilitation specifically, but indicated the transition to online PBL was smooth. Course instructors identified that a fully synchronous delivery as well as modifications of Group Meeting Minutes assignments as potential modifications for future offerings. Future work will aim to address the perceptions and effectiveness of web conferencing facilitation for PBL courses within an undergraduate BME curriculum, as web conferencing could prove to be another significant breakthrough in addressing challenges of problem-based learning courses. 
    more » « less
  4. The higher‐order turbulence scheme, Cloud Layers Unified by Binormals (CLUBB), is known for effectively simulating the transition from cumulus to stratocumulus clouds within leading atmospheric climate models. This study investigates an underexplored aspect of CLUBB: its capacity to simulate near‐surface winds and the Planetary Boundary Layer (PBL), with a particular focus on its coupling with surface momentum flux. Using the GFDL atmospheric climate model (AM4), we examine two distinct coupling strategies, distinguished by their handling of surface momentum flux during the CLUBB's stability‐driven substepping performed at each atmospheric time step. The static coupling maintains a constant surface momentum flux, while the dynamic coupling adjusts the surface momentum flux at each CLUBB substep based on the CLUBB‐computed zonal and meridional wind speed tendencies. Our 30‐year present‐day climate simulations (1980–2010) show that static coupling overestimates 10‐m wind speeds compared to both control AM4 simulations and reanalysis, particularly over the Southern Ocean (SO) and other midlatitude ocean regions. Conversely, dynamic coupling corrects the static coupling 10‐m winds biases in the midlatitude regions, resulting in CLUBB simulations achieving there an excellent agreement with AM4 simulations. Furthermore, analysis of PBL vertical profiles over the SO reveals that dynamic coupling reduces downward momentum transport, consistent with the found wind‐speed reductions. Instead, near the tropics, dynamic coupling results in minimal changes in near‐surface wind speeds and associated turbulent momentum transport structure. Notably, the wind turning angle serves as a valuable qualitative metric for assessing the impact of changes in surface momentum flux representation on global circulation patterns. 
    more » « less
  5. Given the challenges Small Island Developing States (SIDS) face in achieving ocean sustainability, the Barcelona Statement issued after the 2024 Ocean Decade Conference identified further investment in capacity development of SIDS and other underrepresented groups as one of the high-priority crosscutting issues (https://oceanexpert.org/​document/34098). The statement calls for transforming international organizations by expanding existing capacity development services beyond their conventional geographical areas. 
    more » « less