Let p ∈ Z p\in {\mathbb {Z}} be an odd prime. We show that the fiber sequence for the cyclotomic trace of the sphere spectrum S {\mathbb {S}} admits an “eigensplitting” that generalizes known splittings on K K -theory and T C TC . We identify the summands in the fiber as the covers of Z p {\mathbb {Z}}_{p} -Anderson duals of summands in the K ( 1 ) K(1) -localized algebraic K K -theory of Z {\mathbb {Z}} . Analogous results hold for the ring Z {\mathbb {Z}} where we prove that the K ( 1 ) K(1) -localized fiber sequence is self-dual for Z p {\mathbb {Z}}_{p} -Anderson duality, with the duality permuting the summands by i ↦ p − i i\mapsto p-i (indexed mod p − 1 p-1 ). We explain an intrinsic characterization of the summand we call Z Z in the splitting T C ( Z ) p ∧ ≃ j ∨ Σ j ′ ∨ Z TC({\mathbb {Z}})^{\wedge }_{p}\simeq j \vee \Sigma j’\vee Z in terms of units in the p p -cyclotomic tower of Q p {\mathbb {Q}}_{p} .
more »
« less
This content will become publicly available on April 1, 2026
Base Change and Iwasawa Main Conjectures for GL2
Abstract Let $$E$$ be an elliptic curve defined over $${\mathbb{Q}}$$ of conductor $$N$$, $$p$$ an odd prime of good ordinary reduction such that $E[p]$ is an irreducible Galois module, and $$K$$ an imaginary quadratic field with all primes dividing $Np$ split. We prove Iwasawa main conjectures for the $${\mathbb{Z}}_{p}$$-cyclotomic and $${\mathbb{Z}}_{p}$$-anticyclotomic deformations of $$E$$ over $${\mathbb{Q}}$$ and $K,$ respectively, dispensing with any of the ramification hypotheses on $E[p]$ in previous works. The strategy employs base change and the two-variable zeta element associated to $$E$$ over $$K$$, via which the sought after main conjectures are deduced from Wan’s divisibility towards a three-variable main conjecture for $$E$$ over a quartic CM field containing $$K$$ and certain Euler system divisibilities. As an application, we prove cases of the two-variable main conjecture for $$E$$ over $$K$$. The aforementioned one-variable main conjectures imply the $$p$$-part of the conjectural Birch and Swinnerton-Dyer formula for $$E$$ if $$\operatorname{ord}_{s=1}L(E,s)\leq 1$$. They are also an ingredient in the proof of Kolyvagin’s conjecture and its cyclotomic variant in our joint work with Grossi [1].
more »
« less
- PAR ID:
- 10608317
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- International Mathematics Research Notices
- Volume:
- 2025
- Issue:
- 8
- ISSN:
- 1073-7928
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The Euler–Mascheroni constant $$\gamma =0.5772\ldots \!$$ is the $$K={\mathbb Q}$$ example of an Euler–Kronecker constant $$\gamma _K$$ of a number field $K.$ In this note, we consider the size of the $$\gamma _q=\gamma _{K_q}$$ for cyclotomic fields $$K_q:={\mathbb Q}(\zeta _q).$$ Assuming the Elliott–Halberstam Conjecture (EH), we prove uniformly in Q that $$ \begin{align*} \frac{1}{Q}\sum_{Qmore » « less
-
Let be an elliptic curve over with Mordell–Weil rank and be an odd prime of good ordinary reduction. For every imaginary quadratic field satisfying the Heegner hypothesis, there is (subject to the Shafarevich–Tate conjecture) a line, i.e., a free -submodule of rank , in given by universal norms coming from the Mordell–Weil groups of subfields of the anticyclotomic -extension of ; we call it theshadow line. When the twist of by has analytic rank , the shadow line is conjectured to lie in ; we verify this computationally in all our examples. We study the distribution of shadow lines in as varies, framing conjectures based on the computations we have made.more » « less
-
We prove in generic situations that the lattice in a tame type induced by the completed cohomology of a $U(3)$ -arithmetic manifold is purely local, that is, only depends on the Galois representation at places above $$p$$ . This is a generalization to $$\text{GL}_{3}$$ of the lattice conjecture of Breuil. In the process, we also prove the geometric Breuil–Mézard conjecture for (tamely) potentially crystalline deformation rings with Hodge–Tate weights $(2,1,0)$ as well as the Serre weight conjectures of Herzig [‘The weight in a Serre-type conjecture for tame $$n$$ -dimensional Galois representations’, Duke Math. J. 149 (1) (2009), 37–116] over an unramified field extending the results of Le et al. [‘Potentially crystalline deformation 3985 rings and Serre weight conjectures: shapes and shadows’, Invent. Math. 212 (1) (2018), 1–107]. We also prove results in modular representation theory about lattices in Deligne–Lusztig representations for the group $$\text{GL}_{3}(\mathbb{F}_{q})$$ .more » « less
-
Abstract Let f : ℙ 1 → ℙ 1 {f:\mathbb{P}^{1}\to\mathbb{P}^{1}} be a map of degree > 1 {>1} defined over a function field k = K ( X ) {k=K(X)} , where K is a number field and X is a projective curve over K . For each point a ∈ ℙ 1 ( k ) {a\in\mathbb{P}^{1}(k)} satisfying a dynamical stability condition, we prove that the Call–Silverman canonical height for specialization f t {f_{t}} at point a t {a_{t}} , for t ∈ X ( ℚ ¯ ) {t\in X(\overline{\mathbb{Q}})} outside a finite set, induces a Weil height on the curve X ; i.e., we prove the existence of a ℚ {\mathbb{Q}} -divisor D = D f , a {D=D_{f,a}} on X so that the function t ↦ h ^ f t ( a t ) - h D ( t ) {t\mapsto\hat{h}_{f_{t}}(a_{t})-h_{D}(t)} is bounded on X ( ℚ ¯ ) {X(\overline{\mathbb{Q}})} for any choice of Weil height associated to D . We also prove a local version, that the local canonical heights t ↦ λ ^ f t , v ( a t ) {t\mapsto\hat{\lambda}_{f_{t},v}(a_{t})} differ from a Weil function for D by a continuous function on X ( ℂ v ) {X(\mathbb{C}_{v})} , at each place v of the number field K . These results were known for polynomial maps f and all points a ∈ ℙ 1 ( k ) {a\in\mathbb{P}^{1}(k)} without the stability hypothesis,[21, 14],and for maps f that are quotients of endomorphisms of elliptic curves E over k and all points a ∈ ℙ 1 ( k ) {a\in\mathbb{P}^{1}(k)} . [32, 29].Finally, we characterize our stability condition in terms of the geometry of the induced map f ~ : X × ℙ 1 ⇢ X × ℙ 1 {\tilde{f}:X\times\mathbb{P}^{1}\dashrightarrow X\times\mathbb{P}^{1}} over K ; and we prove the existence of relative Néron models for the pair ( f , a ) {(f,a)} , when a is a Fatou point at a place γ of k , where the local canonical height λ ^ f , γ ( a ) {\hat{\lambda}_{f,\gamma}(a)} can be computed as an intersection number.more » « less
An official website of the United States government
