skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 19, 2026

Title: Cognitive Digital Twin for Multi-objective Production Scheduling
Rapid advances in Digital Twin (DT) provide an unprecedented opportunity to derive data-enabled intelligence for smart manufacturing. However, traditional DT is more concerned about real-time data streaming, dashboard visualization, and predictive analytics, but focuses less on multi-agent intelligence. This limitation hampers the development of agentic intelligence for decentralized decision making in complex manufacturing environments. Therefore, this paper presents a Cognitive Digital Twin (CDT) approach for multi-objective production scheduling through decentralized, collaborative multi-agent learning. First, we propose to construct models of heterogeneous agents (e.g., machines, jobs, automated guided vehicles, and automated storage and retrieval systems) that interact with physical and digital twins. Second, multi-objective optimization is embedded in CDT to align production schedules with diverse and often conflicting objectives such as throughput, task transition efficiency, and workload balance. Third, we develop a multi-agent learning approach to enable decentralized decision making in response to unexpected disruptions and dynamic demands. Each agent operates independently and collaboratively with cognitive capabilities, including perception, learning, and reasoning, to optimize the individual agentic objective while contributing to overarching system-wide goals. Finally, the proposed CDT is evaluated and validated with experimental studies in a learning factory environment. Experimental results demonstrate that CDT improves operational performance in terms of task allocation, resource utilization, and system resilience compared to traditional centralized approaches. This initial study of CDT highlights the potential to bring multi-agent cognitive intelligence into next-generation smart manufacturing.  more » « less
Award ID(s):
2302834
PAR ID:
10608684
Author(s) / Creator(s):
;
Publisher / Repository:
ASME
Date Published:
Journal Name:
Journal of Manufacturing Science and Engineering
ISSN:
1087-1357
Page Range / eLocation ID:
1 to 18
Subject(s) / Keyword(s):
Digital twin Manufacturing Decision making Automated guided vehicles Automated materials handling equipment Computer-integrated manufacturing Machinery Modeling Pareto optimization Production systems optimization Resilience Simulation Visualization
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The new wave of Industry 4.0 is transforming manufacturing factories into data-rich environments. This provides an unprecedented opportunity to feed large amounts of sensing data collected from the physical factory into the construction of digital twin (DT) in cyberspace. However, little has been done to fully utilize the DT technology to improve the smartness and autonomous levels of small and medium-sized manufacturing factories. Indeed, only a small fraction of small and medium-sized manufacturers (SMMs) has considered implementing DT technology. There is an urgent need to exploit the full potential of data analytics and simulation-enabled DTs for advanced manufacturing. Hence, this paper presents the design and development of DT models for simulation optimization of manufacturing process flows. First, we develop a multi-agent simulation model that describes nonlinear and stochastic dynamics among a network of interactive manufacturing things, including customers, machines, automated guided vehicles (AGVs), queues, and jobs. Second, we propose a statistical metamodeling approach to design sequential computer experiments to optimize the utilization of AGV under uncertainty. Third, we construct two new graph models—job flow graph and AGV traveling graph—to track and monitor the real-time performance of manufacturing jobshops. The proposed simulation-enabled DT approach is evaluated and validated with experimental studies for the representation of a real-world manufacturing factory. Experimental results show that the proposed methodology effectively transforms a manufacturing jobshop into a new generation of DT-enabled smart factories. The sequential design of experiments effectively reduces the computation overhead of expensive simulations while optimally scheduling the AGV to achieve production throughput cost-effectively. This research is strongly promised to help SMMs fully utilize big data and DT technology for gaining competitive advantages in the global marketplace. 
    more » « less
  2. Recent advancements in Digital Twin (DT) technology have opened new avenues for smart manufacturing. These systems increasingly depend on adaptive control mechanisms to optimize complex processes and reduce production wastage. This research presents an innovative approach that integrates Soft Actor-Critic (SAC) Reinforcement Learning (RL) algorithm with DT technology with Robot Operating System 2 (ROS2) to enable real-time adaptive control in robotic manufacturing. Our experimental setup consists of a ViperX 300 S robot arm, in which two distinct Tasks: (1) static target reaching and (2) dynamic target following were implemented for simulating adaptive control of manufacturing process. The innovative system architecture combines Unity game engine’s simulation environment with ROS2 for seamless and robust DT synchronization. We implemented a hierarchical reward structure to address common RL challenges, including local minima avoidance, convergence acceleration, and training stability, while leveraging transfer learning to efficiently adapt trained behavior models across tasks. Experimental results demonstrate rapid policy convergence and robust task execution, with performance metrics including cumulative reward, value loss, policy loss, and entropy validating the effectiveness of the approach. To the best of our knowledge, this is the first study to integrate Unity with ROS2-based DT for real-time synchronization and adaptive physical robot control using RL. Unlike prior works limited to offline or low-frequency simulations, our framework achieves stable 20 ms joint-level synchronization, enabling deployment of learned behaviors directly to physical robotic systems through virtual platform. This work advances the integration of RL with realistic DT framework for industrial and manufacturing robotics applications, providing a framework for enhanced adaptive real-time control in smart additive manufacturing (AM) processes. 
    more » « less
  3. Digital twin is a vital enabling technology for smart manufacturing in the era of Industry 4.0. Digital twin effectively replicates its physical asset enabling easy visualization, smart decision-making and cognitive capability in the system. In this paper, a framework of dynamic data driven digital twin for complex engineering products was proposed. To illustrate the proposed framework, an example of health management on aircraft engines was studied. This framework models the digital twin by extracting information from the various sensors and Industry Internet of Things (IIoT) monitoring the remaining useful life (RUL) of an engine in both cyber and physical domains. Then, with sensor measurements selected from linear degradation models, a long short-term memory (LSTM) neural network is proposed to dynamically update the digital twin, which can estimate the most up-to-date RUL of the physical aircraft engine. Through comparison with other machine learning algorithms, including similarity based linear regression and feed forward neural network, on RUL modelling, this LSTM based dynamical data driven digital twin provides a promising tool to accurately replicate the health status of aircraft engines. This digital twin based RUL technique can also be extended for health management and remote operation of manufacturing systems. 
    more » « less
  4. Modern manufacturing is increasingly challenged by larger product varieties, shorter product life cycles, and unexpected production disruptions. Examples of such disruptions include market uncertainty, machine failures, and delivery backlogs. These disturbances are intricately interrelated, exacerbating system complexity and necessitating the adaptive organization (or re-configuration) of machine networks within factory layouts. However, traditional factory layouts are often stationary and lack the flexibility to rearrange or adjust machine networks in response to volatile markets and unexpected disruptions. Also, layout planning typically emphasizes offline design and configuration of machine networks and resources within a facility to optimize process flow and production performance, but tends to overlook the self-organizing arrangement of machines in a dynamic environment. Therefore, to address this gap, this paper presents a novel Self-organizing Machine Network (SOMN) model that optimizes the spatial layout of machine positions and queue configurations, thereby enhancing the manufacturing system’s resilience to unexpected disruptions. First, as opposed to traditional fixed machine positions, we design intelligent machine agents that communicate and autonomously reorganize in real-time to optimize key performance indicators (KPIs). Second, we develop the machine network model in a Digital Twin (DT) environment, facilitating cyber-physical interactions and capturing variations of state-action space in machine agents. Third, multi-agent reinforcement learning (MARL) algorithms empower these networked machine agents to adapt layouts and minimize the impact of disruptions on production performance. We evaluate and validate the proposed SOMN model through computer experiments, benchmarking it against random search and simulated annealing approaches. Experimental results show that the SOMN model significantly improves material handling efficiency, reduces computational overhead, and maintains productivity in different scenarios of manufacturing disruptions. This research holds strong potential for enabling distributed intelligence within self-organizing machine networks for resilient manufacturing. 
    more » « less
  5. Digital Twin (DT) is one of the key enabling technologies for realizing the promise of Smart Manufacturing (SM) and Industry 4.0 to improve production systems operation. Driven by the generation and analysis of high volume data coming from interconnected cyber and physical spaces, DTs are real-time digital images of physical systems, processes or products that help evaluate and improve business performance. This paper proposes a novel DT architecture for the real- time monitoring and evaluation of large-scale SM systems. An application to a manufacturing flow-shop is presented to illustrate the usefulness of the proposed methodology. 
    more » « less