The ALICE Collaboration reports the measurement of semi-inclusive distributions of charged-particle jets recoiling from a high transverse momentum (high ) hadron trigger in proton-proton and central Pb-Pb collisions at . A data-driven statistical method is used to mitigate the large uncorrelated background in central Pb-Pb collisions. Recoil jet distributions are reported for jet resolution parameter , 0.4, and 0.5 in the range and trigger-recoil jet azimuthal separation . The measurements exhibit a marked medium-induced jet yield enhancement at low and at large azimuthal deviation from . The enhancement is characterized by its dependence on , which has a slope that differs from zero by . Comparisons to model calculations incorporating different formulations of jet quenching are reported. These comparisons indicate that the observed yield enhancement arises from the response of the QGP medium to jet propagation. © 2024 CERN, for the ALICE Collaboration2024CERN 
                        more » 
                        « less   
                    This content will become publicly available on June 1, 2026
                            
                            Hard-photon-triggered jets in p−p and A−A collisions
                        
                    
    
            An investigation of high-transverse-momentum (high- ) photon-triggered jets in proton-proton ( ) and ion-ion ( ) collisions at and is carried out, using the multistage description of in-medium jet evolution. Monte Carlo simulations of hard scattering and energy loss in heavy-ion collisions are performed using parameters tuned in a previous study of the nuclear modification factor ( ) for inclusive jets and high- hadrons. We obtain a good reproduction of the experimental data for photon-triggered jet , as measured by the ATLAS detector, the distribution of the ratio of jet to photon ( ), measured by both CMS and ATLAS, and the photon-jet azimuthal correlation as measured by CMS. We obtain a moderate description of the photon-triggered jet , as measured by STAR. A noticeable improvement in the comparison is observed when one goes beyond prompt photons and includes bremsstrahlung and decay photons, revealing their significance in certain kinematic regions, particularly at . Moreover, azimuthal angle correlations demonstrate a notable impact of bremsstrahlung photons on the distribution, emphasizing their role in accurately describing experimental results. This work highlights the success of the multistage model of jet modification to straightforwardly predict (this set of) photon-triggered jet observables. This comparison, along with the role played by bremsstrahlung photons, has important consequences on the inclusion of such observables in a future Bayesian analysis. Published by the American Physical Society2025 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10609438
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- APS
- Date Published:
- Journal Name:
- Physical Review C
- Volume:
- 111
- Issue:
- 6
- ISSN:
- 2469-9985
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            A search for collective effects inside jets produced in proton-proton collisions is performed via correlation measurements of charged particles using the CMS detector at the CERN LHC. The analysis uses data collected at a center-of-mass energy of , corresponding to an integrated luminosity of . Jets are reconstructed with the anti- algorithm with a distance parameter of 0.8 and are required to have transverse momentum greater than 550 GeV and pseudorapidity . Two-particle correlations among the charged particles within the jets are studied as functions of the particles’ azimuthal angle and pseudorapidity separations ( and ) in a jet coordinate basis, where particles’ , are defined relative to the direction of the jet. The correlation functions are studied in classes of in-jet charged-particle multiplicity up to . Fourier harmonics are extracted from long-range azimuthal correlation functions to characterize azimuthal anisotropy for . For low- jets, the long-range elliptic anisotropic harmonic, , is observed to decrease with . This trend is well described by Monte Carlo event generators. However, a rising trend for emerges at , hinting at a possible onset of collective behavior, which is not reproduced by the models tested. This observation yields new insights into the dynamics of jet evolution in the vacuum. © 2024 CERN, for the CMS Collaboration2024CERNmore » « less
- 
            Energy correlators that describe energy-weighted distances between two or three particles in a hadronic jet are measured using an event sample of proton-proton collisions collected by the CMS experiment and corresponding to an integrated luminosity of . The measured distributions are consistent with the trends in the simulation that reveal two key features of the strong interaction: confinement and asymptotic freedom. By comparing the ratio of the measured three- and two-particle energy correlator distributions with theoretical calculations that resum collinear emissions at approximate next-to-next-to-leading-logarithmic accuracy matched to a next-to-leading-order calculation, the strong coupling is determined at the boson mass: , the most precise value obtained using jet substructure observables. © 2024 CERN, for the CMS Collaboration2024CERNmore » « less
- 
            This Letter presents the most precise measurement to date of the matter-antimatter imbalance at midrapidity in Pb-Pb collisions at a center-of-mass energy per nucleon pair . Using the Statistical Hadronization framework, it is possible to obtain the value of the electric charge and baryon chemical potentials, and , with unprecedented precision. A centrality-differential study of the antiparticle-to-particle yield ratios of charged pions, protons, baryons, and light (hyper)nuclei is performed. These results indicate that the system created in Pb-Pb collisions at the LHC is on average baryon-free and electrically neutral at midrapidity. © 2024 CERN, for the ALICE Collaboration2024CERNmore » « less
- 
            A search is presented for high-mass exclusive diphoton production via photon-photon fusion in proton-proton collisions at in events where both protons survive the interaction. The analysis utilizes data corresponding to an integrated luminosity of collected in 2016–2018 with the central CMS detector and the CMS and TOTEM precision proton spectrometer (PPS). Events that have two photons with high transverse momenta ( ), back-to-back in azimuth, and with a large diphoton invariant mass ( ) are selected. To remove the dominant inclusive diphoton backgrounds, the kinematic properties of the protons detected in PPS are required to match those of the central diphoton system. Only events having opposite-side forward protons detected with a fractional momentum loss between 0.035 and 0.15 (0.18) for the detectors on the negative (positive) side of CMS are considered. One exclusive diphoton candidate is observed for an expected background of 1.1 events. Limits at 95% confidence level are derived for the four-photon anomalous coupling parameters and , using an effective field theory. Additionally, upper limits are placed on the production of axionlike particles with coupling strength to photons that varies from to over the mass range from 500 to 2000 GeV. © 2024 CERN, for the CMS and TOTEMs Collaboration2024CERNmore » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
