Abstract The evolutionary path of massive stars begins at helium burning. Energy production for this phase of stellar evolution is dominated by the reaction path 3$$\alpha \rightarrow ^{12}$$ C$$(\alpha ,\gamma )^{16}$$ O and also determines the ratio of$$^{12}$$ C/$$^{16}$$ O in the stellar core. This ratio then sets the evolutionary trajectory as the star evolves towards a white dwarf, neutron star or black hole. Although the reaction rate of the 3$$\alpha $$ process is relatively well known, since it proceeds mainly through a single narrow resonance in$$^{12}$$ C, that of the$$^{12}$$ C$$(\alpha ,\gamma )^{16}$$ O reaction remains uncertain since it is the result of a more difficult to pin down, slowly-varying, portion of the cross section over a strong interference region between the high-energy tails of subthreshold resonances, the low-energy tails of higher-energy broad resonances and direct capture. Experimental measurements of this cross section require herculean efforts, since even at higher energies the cross section remains small and large background sources are often present that require the use of very sensitive experimental methods. Since the$$^{12}$$ C$$(\alpha ,\gamma )^{16}$$ O reaction has such a strong influence on many different stellar objects, it is also interesting to try to back calculate the required rate needed to match astrophysical observations. This has become increasingly tempting, as the accuracy and precision of observational data has been steadily improving. Yet, the pitfall to this approach lies in the intermediary steps of modeling, where other uncertainties needed to model a star’s internal behavior remain highly uncertain. 
                        more » 
                        « less   
                    
                            
                            Spectroscopic investigation of $$^{54}$$Cr via $$\alpha $$-transfer reaction
                        
                    
    
            Abstract Low-lying states in$$^{54}$$ Cr have been investigated via the$$\alpha $$ -transfer reaction$$^{50}$$ Ti($$^{7}$$ Li,t) at a bombarding energy of 20 MeV. The exclusive$$\alpha $$ -transfer channel is separated from other reaction channels through the appropriate energy gate on the complementary particle, triton. Levels of$$^{54}$$ Cr populated exclusively by the$$\alpha $$ -transfer process could be identified up to$$\approx $$ 5 MeV excitation energy and angular momentum up to$$(8)^{+}$$ , by identifying the corresponding known$$\gamma $$ -rays. These include multiple low-lying non-yrast 2$$^+$$ and 4$$^+$$ states, which would otherwise be unfavorable via fusion evaporation reactions. The feeding-subtracted$$\gamma $$ -ray yields have been extracted to estimate the population of various excited states through the transfer process. The measured integrated transfer cross sections for all the observed yrast and non-yrast states are compared with Coupled Channels calculations usingfrescoto extract the$$\alpha $$ +$$^{50}$$ Ti core spectroscopic factors. For the yrast states, a higher$$\alpha $$ +core overlap is seen for the$$2^+$$ and$$4^+$$ states, while it is seen to be less favorable for the$$6^+$$ and$$(8)^+$$ states when$$\alpha $$ -transfer is considered to occur predominantly as a direct one-step process to the$$^{50}$$ Ti core ground state. The yrast$$2^+$$ , and$$4^+$$ states are predominantly populated by single-step transfer, while for the states with spin$$\ge $$ 5, the possibility of core excitation followed by$$\alpha $$ -transfer shows a larger$$\alpha $$ -core overlap. For the non-yrast$$0^+$$ ,$$2^+$$ , and$$4^+$$ states, single-step transfer shows moderate to small$$\alpha $$ -core overlap. No higher spin non-yrast states are observed. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2310059
- PAR ID:
- 10609854
- Publisher / Repository:
- Springer Science + Business Media
- Date Published:
- Journal Name:
- The European Physical Journal A
- Volume:
- 61
- Issue:
- 6
- ISSN:
- 1434-601X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract We introduce a family of Finsler metrics, called the$$L^p$$ -Fisher–Rao metrics$$F_p$$ , for$$p\in (1,\infty )$$ , which generalizes the classical Fisher–Rao metric$$F_2$$ , both on the space of densities$${\text {Dens}}_+(M)$$ and probability densities$${\text {Prob}}(M)$$ . We then study their relations to the Amari–C̆encov$$\alpha $$ -connections$$\nabla ^{(\alpha )}$$ from information geometry: on$${\text {Dens}}_+(M)$$ , the geodesic equations of$$F_p$$ and$$\nabla ^{(\alpha )}$$ coincide, for$$p = 2/(1-\alpha )$$ . Both are pullbacks of canonical constructions on$$L^p(M)$$ , in which geodesics are simply straight lines. In particular, this gives a new variational interpretation of$$\alpha $$ -geodesics as being energy minimizing curves. On$${\text {Prob}}(M)$$ , the$$F_p$$ and$$\nabla ^{(\alpha )}$$ geodesics can still be thought as pullbacks of natural operations on the unit sphere in$$L^p(M)$$ , but in this case they no longer coincide unless$$p=2$$ . Using this transformation, we solve the geodesic equation of the$$\alpha $$ -connection by showing that the geodesic are pullbacks of projections of straight lines onto the unit sphere, and they always cease to exists after finite time when they leave the positive part of the sphere. This unveils the geometric structure of solutions to the generalized Proudman–Johnson equations, and generalizes them to higher dimensions. In addition, we calculate the associate tensors of$$F_p$$ , and study their relation to$$\nabla ^{(\alpha )}$$ .more » « less
- 
            Abstract CUPID, the CUORE Upgrade with Particle Identification, is a next-generation experiment to search for neutrinoless double beta decay ($$0\mathrm {\nu \beta \beta }$$ ) and other rare events using enriched Li$$_{2}$$ $$^{100}$$ MoO$$_{4}$$ scintillating bolometers. It will be hosted by the CUORE cryostat located at the Laboratori Nazionali del Gran Sasso in Italy. The main physics goal of CUPID is to search for$$0\mathrm {\nu \beta \beta }$$ of$$^{100}$$ Mo with a discovery sensitivity covering the full neutrino mass regime in the inverted ordering scenario, as well as the portion of the normal ordering regime with lightest neutrino mass larger than 10 meV. With a conservative background index of 10$$^{-4}$$ cts$$/($$ keV$$\cdot $$ kg$$\cdot $$ yr$$)$$ , 240 kg isotope mass, 5 keV FWHM energy resolution at 3 MeV and 10 live-years of data taking, CUPID will have a 90% C.L. half-life exclusion sensitivity of$$1.8\cdot 10^{27}$$ yr, corresponding to an effective Majorana neutrino mass ($$m_{\beta \beta }$$ ) sensitivity of 9–15 meV, and a$$3\sigma $$ discovery sensitivity of$$1\cdot 10^{27}$$ yr, corresponding to an$$m_{\beta \beta }$$ range of 12–21 meV.more » « less
- 
            Abstract A search for the very rare$$B^{*0}\rightarrow \mu ^+\mu ^-$$ and$$B_{s}^{*0}\rightarrow \mu ^+\mu ^-$$ decays is conducted by analysing the$$B_c^+\rightarrow \pi ^+\mu ^+\mu ^-$$ process. The analysis uses proton-proton collision data collected with the LHCb detector between 2011 and 2018, corresponding to an integrated luminosity of 9$$\text {\,fb}^{-1}$$ . The signal signatures correspond to simultaneous peaks in the$$\mu ^+\mu ^-$$ and$$\pi ^+\mu ^+\mu ^-$$ invariant masses. No evidence for an excess of events over background is observed for either signal decay mode. Upper limits at the$$90\%$$ confidence level are set on the branching fractions relative to that for$$B_c^+\rightarrow J\hspace{-1.66656pt}/\hspace{-1.111pt}\psi \pi ^+$$ decays,$$\begin{aligned} \mathcal{R}_{B^{*0}(\mu ^+\mu ^-)\pi ^+/J\hspace{-1.66656pt}/\hspace{-1.111pt}\psi \pi ^+}&< 3.8\times 10^{-5}\ \text { and }\\ \mathcal{R}_{B_{s}^{*0}(\mu ^+\mu ^-)\pi ^+/J\hspace{-1.66656pt}/\hspace{-1.111pt}\psi \pi ^+}&< 5.0\times 10^{-5}. \end{aligned}$$more » « less
- 
            Abstract Schinzel and Wójcik have shown that for every$$\alpha ,\beta \in \mathbb {Q}^{\times }\hspace{0.55542pt}{\setminus }\hspace{1.111pt}\{\pm 1\}$$ , there are infinitely many primespwhere$$v_p(\alpha )=v_p(\beta )=0$$ and where$$\alpha $$ and$$\beta $$ generate the same multiplicative group modp. We prove a weaker result in the same direction for algebraic numbers$$\alpha , \beta $$ . Let$$\alpha , \beta \in \overline{\mathbb {Q}} ^{\times }$$ , and suppose$$|N_{\mathbb {Q}(\alpha ,\beta )/\mathbb {Q}}(\alpha )|\ne 1$$ and$$|N_{\mathbb {Q}(\alpha ,\beta )/\mathbb {Q}}(\beta )|\ne 1$$ . Then for some positive integer$$C = C(\alpha ,\beta )$$ , there are infinitely many prime idealsPof Equation missing<#comment/>where$$v_P(\alpha )=v_P(\beta )=0$$ and where the group$$\langle \beta \bmod {P}\rangle $$ is a subgroup of$$\langle \alpha \bmod {P}\rangle $$ with$$[\langle \alpha \bmod {P}\rangle \,{:}\, \langle \beta \bmod {P}\rangle ]$$ dividingC. A key component of the proof is a theorem of Corvaja and Zannier bounding the greatest common divisor of shiftedS-units.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
