skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Object-oriented Unified Encrypted Memory Management for Heterogeneous Memory Architectures
In contemporary database applications, the demand for memory resources is intensively high. To enhance adaptability to varying resource needs and improve cost efficiency, the integration of diverse storage technologies within heterogeneous memory architectures emerges as a promising solution. Despite the potential advantages, there exists a significant gap in research related to the security of data within these complex systems. This paper endeavors to fill this void by exploring the intricacies and challenges of ensuring data security in object-oriented heterogeneous memory systems. We introduce the concept of Unified Encrypted Memory (UEM) management, a novel approach that provides unified object references essential for data management platforms, while simultaneously concealing the complexities of physical scheduling from developers. At the heart of UEM lies the seamless and efficient integration of data encryption techniques, which are designed to ensure data integrity and guarantee the freshness of data upon access. Our research meticulously examines the security deficiencies present in existing heterogeneous memory system designs. By advancing centralized security enforcement strategies, we aim to achieve efficient object-centric data protection. Through extensive evaluations conducted across a variety of memory configurations and tasks, our findings highlight the effectiveness of UEM. The security features of UEM introduce low and acceptable overheads, and UEM outperforms conventional security measures in terms of speed and space efficiency.  more » « less
Award ID(s):
1955670 1750158
PAR ID:
10609861
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
ACM
Date Published:
Journal Name:
Proceedings of the ACM on Management of Data
Volume:
2
Issue:
3
ISSN:
2836-6573
Page Range / eLocation ID:
1 to 29
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Current state-of-the-art resource management systems leverage Machine Learning (ML) methods to enable the efficient use of heterogeneous memory hardware, deployed across emerging computing platforms. While machine intelligence can be effectively used to learn and predict complex data access patterns of modern analytics, the use of ML over the exploded data sizes and memory footprints is prohibitive for its practical system-level integration. For this reason, recent solutions use existing lightweight historical information to predict the access behavior of majority of the application pages, and train ML models over a small page subset. To maximize application performance improvements, the pages selected for machine learning-based management are identified with elaborate page selection methods. These methods involve the calculation of detailed performance estimates depending on the configuration of the hybrid memory platform. This paper aims to reduce such vast operational overheads, that further exacerbate the existing high overheads of using machine intelligence, in return for high performance and efficiency. To this end, we build Cronus, an image-based pipeline for selecting pages for ML-based management. We visualize memory access patterns and reveal spatial and temporal correlations among the selected pages, that current methods fail to leverage. We then use the created images to detect patterns and select page groups for machine learning model deployment. Cronus drastically reduces the operational costs, while preserving the effectiveness of the page selection and achieved performance of machine intelligent hybrid memory management. This work makes a case that visualization and computer vision methods can unlock new insights and reduce the operational complexity of emerging systems solutions. 
    more » « less
  2. Computing platforms that package multiple types of memory, each with their own performance characteristics, are quickly becoming mainstream. To operate efficiently, heterogeneous memory architectures require new data management solutions that are able to match the needs of each application with an appropriate type of memory. As the primary generators of memory usage, applications create a great deal of information that can be useful for guiding memory management, but the community still lacks tools to collect, organize, and leverage this information effectively. To address this gap, this work introduces a novel software framework that collects and analyzesobject-levelinformation to guide memory tiering. The framework includes tools to monitor the capacity and usage of individual data objects, routines that aggregate and convert this information into tier recommendations for the host platform, and mechanisms to enforce these recommendations according to user-selected policies. Moreover, the developed tools and techniques are fully automatic, work on standard Linux systems, and do not require modification or recompilation of existing software. Using this framework, this study evaluates and compares the impact of a variety of design choices for memory tiering, including different policies for prioritizing objects for the fast memory tier as well as the frequency and timing of migration events. The results, collected on a modern Intel platform with conventional DDR4 SDRAM as well as Intel Optane NVRAM, show that guiding data tiering with object-level information can enable significant performance and efficiency benefits compared with standard hardware- and software-directed data-tiering strategies for a diverse set of memory-intensive workloads. 
    more » « less
  3. Serverless computing is an increasingly attractive paradigm in the cloud due to its ease of use and fine-grained pay-for-what-you-use billing. However, serverless computing poses new challenges to system design due to its short-lived function execution model. Our detailed analysis reveals that memory management is responsible for a major amount of function execution cycles. This is because functions pay the full critical-path costs of memory management in both userspace and the operating system without the opportunity to amortize these costs over their short lifetimes. To address this problem, we propose Memento, a new hardware-centric memory management design based upon our insights that memory allocations in serverless functions are typically small, and either quickly freed after allocation or freed when the function exits. Memento alleviates the overheads of serverless memory management by introducing two key mechanisms: (i) a hardware object allocator that performs in-cache memory allocation and free operations based on arenas, and (ii) a hardware page allocator that manages a small pool of physical pages used to replenish arenas of the object allocator. Together these mechanisms alleviate memory management overheads and bypass costly userspace and kernel operations. Memento naturally integrates with existing software stacks through a set of ISA extensions that enable seamless integration with multiple languages runtimes. Finally, Memento leverages the newly exposed memory allocation semantics in hardware to introduce a main memory bypass mechanism and avoid unnecessary DRAM accesses for newly allocated objects. We evaluate Memento with full-system simulations across a diverse set of containerized serverless workloads and language runtimes. The results show that Memento achieves function execution speedups ranging between 8–28% and 16% on average. Furthermore, Memento hardware allocators and main memory bypass mechanisms drastically reduce main memory traffic by 30% on average. The combined effects of Memento reduce the pricing cost of function execution by 29%. Finally, we demonstrate the applicability of Memento beyond functions, to major serverless platform operations and long-running data processing applications. 
    more » « less
  4. null (Ed.)
    Many high-performance systems now include different types of memory devices within the same compute platform to meet strict performance and cost constraints. Such heterogeneous memory systems often include an upper-level tier with better performance, but limited capacity, and lower-level tiers with higher capacity, but less bandwidth and longer latencies for reads and writes. To utilize the different memory layers efficiently, current systems rely on hardware-directed, memory -side caching or they provide facilities in the operating system (OS) that allow applications to make their own data-tier assignments. Since these data management options each come with their own set of trade-offs, many systems also include mixed data management configurations that allow applications to employ hardware- and software-directed management simultaneously, but for different portions of their address space. Despite the opportunity to address limitations of stand-alone data management options, such mixed management modes are under-utilized in practice, and have not been evaluated in prior studies of complex memory hardware. In this work, we develop custom program profiling, configurations, and policies to study the potential of mixed data management modes to outperform hardware- or software-based management schemes alone. Our experiments, conducted on an Intel ® Knights Landing platform with high-bandwidth memory, demonstrate that the mixed data management mode achieves the same or better performance than the best stand-alone option for five memory intensive benchmark applications (run separately and in isolation), resulting in an average speedup compared to the best stand-alone policy of over 10 %, on average. 
    more » « less
  5. The digitization of legacy infrastructure constitutes an important component of smart cities. While most cities worldwide possess digital maps of their transportation infrastructure, few have accurate digital information on their electric, natural gas, telecom, water, wastewater, and district heating and cooling systems. Digitizing data on legacy infrastructure systems comes with several challenges such as missing data, data conversion issues, data inconsistency, differences in the data format, spatio-temporal resolutions, structure, semantics and syntax, difficulty in providing controlled access to the datasets, and so on. Therefore, we introduce GUIDES, a new data conversion and management framework for urban infrastructure systems, which is comprised of big data analytics, efficient data management techniques, semantic web technologies, methods to ensure information security, and tools that aid visual analytics. The proposed framework facilitates: (i) mapping of urban infrastructure systems; (ii) integration of heterogeneous geospatial data; (iii) a secured way of storing, analyzing and querying data while preserving the semantics; (iv) qualitative and quantitative analysis over several spatio-temporal resolutions; and (v) visualization of static (e.g., land use) and dynamic (e.g., road traffic) information. 
    more » « less