skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 1, 2026

Title: Factors underlying migratory timing of a seasonally migrating bird
Bird migration has fascinated natural historians and scientists for centuries. While the timing of migration is known to vary by species, population, sex, and individual, identifying the cause of this variation can be challenging. Here we investigate factors underlying migratory timing in a long- distance migratory bird, the Common Yellowthroat (Geothlypas trichas), using a population genomic approach. We begin by creating a map of genetic variation across geographic space (a “genoscape”) using lcWGS from across the breeding range. We then utilize genetic assays to assign 249 wintering and 1050 northward migrating birds to genetically distinct breeding populations. Additionally, we estimate the expected spring onset date in each predicted breeding region and calculate the remaining migratory distance for northward migrating birds. Our findings indicate that when population genetic structure is not a factor in the analysis, it appears that birds captured early in the season are migrating to breeding grounds where spring arrives later, which contrasts with prior research. However, when we incorporate population structure into our analysis, our results align with predictions, indicating that birds captured earlier in the season are indeed heading to breeding grounds where spring arrives earlier. Further analysis revealed that the disparity between results obtained with and without population genetic structure can be attributed to the fact that individuals from the western genetic group migrate three times the distance to the west, despite breeding at the same latitude. Our findings suggest that categorizing large numbers of migrating birds into genetically distinct groups can reveal population-specific patterns in migratory timing and shed light on the relative contributions of different selective forces responsible for the observed patterns.  more » « less
Award ID(s):
1942313 2222526
PAR ID:
10609953
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Scientific Reports
Date Published:
Journal Name:
Scientific Reports
Volume:
15
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Migratory birds have the capacity to shift their migration phenology in response to climatic change. Yet the mechanistic underpinning of changes in migratory timing remain poorly understood. We employed newly developed global positioning system (GPS) tracking devices and long-term dataset of migration passage timing to investigate how behavioral responses to environmental conditions relate to phenological shifts in American robins (Turdus migratorius) during spring migration to Arctic-boreal breeding grounds. We found that over the past quarter-century (1994–2018), robins have migrated ca. 5 d/decade earlier. Based on GPS data collected for 55 robins over three springs (2016–2018), we found the arrival timing and likelihood of stopovers, and timing of arrival to breeding grounds, were strongly influenced by dynamics in snow conditions along migratory paths. These findings suggest plasticity in migratory behavior may be an important mechanism for how long-distance migrants adjust their breeding phenology to keep pace with advancement of spring on breeding grounds. 
    more » « less
  2. Abstract Quantifying the timing and intensity of migratory movements is imperative for understanding impacts of changing landscapes and climates on migratory bird populations. Billions of birds migrate in the Western Hemisphere, but accurately estimating the population size of one migratory species, let alone hundreds, presents numerous obstacles. Here, we quantify the timing, intensity, and distribution of bird migration through one of the largest migration corridors in the Western Hemisphere, the Gulf of Mexico (the Gulf). We further assess whether there have been changes in migration timing or intensity through the Gulf. To achieve this, we integrate citizen science (eBird) observations with 21 years of weather surveillance radar data (1995–2015). We predicted no change in migration timing and a decline in migration intensity across the time series. We estimate that an average of 2.1 billion birds pass through this region each spring en route to Nearctic breeding grounds. Annually, half of these individuals pass through the region in just 18 days, between April 19 and May 7. The western region of the Gulf showed a mean rate of passage 5.4 times higher than the central and eastern regions. We did not detect an overall change in the annual numbers of migrants (2007–2015) or the annual timing of peak migration (1995–2015). However, we found that the earliest seasonal movements through the region occurred significantly earlier over time (1.6 days decade−1). Additionally, body mass and migration distance explained the magnitude of phenological changes, with the most rapid advances occurring with an assemblage of larger‐bodied shorter‐distance migrants. Our results provide baseline information that can be used to advance our understanding of the developing implications of climate change, urbanization, and energy development for migratory bird populations in North America. 
    more » « less
  3. Warming temperatures have been linked to advancing spring migration dates of birds, although most studies have been conducted at individual sites. Problems may arise if birds arrive or depart before or after associated food resources reach critical lifecycle stages. I compared mean first arrival dates of Rufous Hummingbird (Selaphorus rufus), a prolific pollinator and long-distance migrant, between 1895-1969 and 2006-2015 at eight locations in Oregon, Washington, and British Columbia. Historical arrivals were reported through the North American Bird Phenology Program and recent arrivals were estimated from temporal occupancy patterns using eBird checklists. Results indicated that hummingbirds arrived 8 and 11 days later in the recent time period in two coastal cities in Oregon and 7-17 days earlier in northern, more inland cities in Washington and British Columbia. Spring temperatures have increased in the past century in much of this region and birds arrived earlier in years with warmer spring temperatures, suggesting that migratory advancements were climate-related. Later arrivals reported in coastal regions of Oregon in the recent time period may suggest that Rufous Hummingbirds are bypassing coastal areas to take advantage of more predictable conditions along inland migratory routes, or are shifting their breeding ranges northward, notions both supported by declining population trends observed in Breeding Bird Survey data. My results provide justification for the investigation of the ecological impacts of climate change on birds in coastal vs. inland environments and a framework for comparing information from two extensive and emerging datasets to better understand the impacts of climate change on bird migration. 
    more » « less
  4. null (Ed.)
    Abstract In migratory birds, among- and within-species heterogeneity in response to climate change may be attributed to differences in migration distance and environmental cues that affect timing of arrival at breeding grounds. We used eBird observations and a within-species comparative approach to examine whether migration distance (with latitude as a proxy) and weather predictors can explain spring arrival dates at the breeding site in a raptor species with a widespread distribution and diverse migration strategies, the American Kestrel Falco sparverius. We found an interactive effect between latitude and spring minimum temperatures on arrival dates, whereby at lower latitudes (short-distance migrants) American Kestrels arrived earlier in warmer springs and later in colder springs, but American Kestrels at higher latitudes (long-distance migrants) showed no association between arrival time and spring temperatures. Increased snow cover delayed arrival at all latitudes. Our results support the hypothesis that short-distance migrants are better able to respond to conditions on the breeding ground than are long-distance migrants, suggesting that long-distance migrants may be more vulnerable to shifts in spring conditions that could lead to phenological mismatch between peak resources and nesting. 
    more » « less
  5. Climate change is shifting the phenology of migratory animals earlier; yet an understanding of how climate change leads to variable shifts across populations, species and communities remains hampered by limited spatial and taxonomic sampling. In this study, we used a hierarchical Bayesian model to analyse 88,965 site‐specific arrival dates from 222 bird species over 21 years to investigate the role of temperature, snowpack, precipitation, the El‐Niño/Southern Oscillation and the North Atlantic Oscillation on the spring arrival timing of Nearctic birds. Interannual variation in bird arrival on breeding grounds was most strongly explained by temperature and snowpack, and less strongly by precipitation and climate oscillations. Sensitivity of arrival timing to climatic variation exhibited spatial nonstationarity, being highly variable within and across species. A high degree of heterogeneity in phenological sensitivity suggests diverging responses to ongoing climatic changes at the population, species and community scale, with potentially negative demographic and ecological consequences. 
    more » « less