skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Pacific‐Arctic Connections: Assessing Flow Through Bering Strait in Context With Dynamic Ocean Topography and Surface Stress
Bering Strait is the only ocean gateway connecting the Pacific and Arctic oceans. The ∼1 Sv northward flow of Pacific water through the strait to the Arctic Ocean has been increasing by ∼0.01 Sv/yr since 1990. Monthly dynamic ocean topography (DOT), wind, and sea‐ice data at Bering Strait are analyzed in context with the long‐term record of flow through the strait to investigate local drivers. Ocean transport is found to be proportional to the across‐strait slope in DOT, suggesting some component of the flow is in geostrophic balance. Along‐strait ocean surface stresses, which modulate the across‐strait DOT slope via Ekman transport, are analyzed in the presence of a seasonally varying ice cover. It is shown that northward interior ocean flow under sea ice in winter results in southward surface stresses, and westward Ekman transport that slows the geostrophic component of the northward ocean flow. As the number of open water days local to Bering Strait increase each year, we find no trend in the annual mean surface stress, that is, the loss of sea ice is not leading to increased northward wind stress input that would enhance northward ocean flow. This analysis is consistent with the theory that changes in both the atmosphere and ocean non‐local to Bering Strait are likely driving the increased transport from the Pacific into the Arctic via Bering Strait.  more » « less
Award ID(s):
2053084 2053003
PAR ID:
10610155
Author(s) / Creator(s):
; ;
Publisher / Repository:
JGR Oceans
Date Published:
Journal Name:
Journal of Geophysical Research: Oceans
Volume:
129
Issue:
8
ISSN:
2169-9275
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract As the only oceanic connection between the Pacific and Arctic‐Atlantic Oceans, Bering Strait throughflow carries a climatological northward transport of about 1 Sv, contributing to the Atlantic Meridional Overturning Circulation (AMOC). Here, Lagrangian analysis quantifies the global distributions of volume transport, transit‐times, thermohaline properties, diapycnal transformation, heat and freshwater transports associated with Bering Strait throughflow. Virtual Lagrangian parcels, released at Bering Strait, are advected by the velocity of Estimating the Circulation and Climate of the Ocean, backward and forward in time. Backward trajectories reveal that Bering Strait throughflow enters the Pacific basin on the southeast side, as part of fresh Antarctic Intermediate Water, then follows the wind‐driven circulation to Bering Strait. Median transit time from S in Indo‐Pacific to Bering Strait is 175 years. Sixty‐four percent of Bering Strait throughflow enters the North Atlantic through the Labrador Sea. The remaining 36% flows through the Greenland Sea, warmed and salinified by the northward flowing Atlantic waters. Deep water formation of water flowing through Bering Strait occurs predominantly in the Labrador Sea. Subsequently, this water joins the lower branch of AMOC, flowing southward in the deep western boundary current as North Atlantic Deep Water. Median transit time from Bering Strait to S in South Atlantic is 160 years. The net heat transport of Bering Strait throughflow is northward everywhere, and net freshwater transport by Bering Strait throughflow is mostly northward. The freshwater transport is largest in the subpolar region of basin sectors: northward in the Pacific and Arctic and southward in the Atlantic. 
    more » « less
  2. Abstract It is well established that the mean transport through Bering Strait is balanced by a sea level difference between the North Pacific and the Arctic Ocean, but no mechanism has been proposed to explain this sea level difference. It is argued that the sea level difference across Bering Strait, which geostrophically balances the northward throughflow, is associated with the sea level difference between the North Pacific and the North Atlantic/Arctic. In turn, the latter difference is caused by deeper middepth isopycnals in the Indo-Pacific than in the Atlantic, especially in the northern high latitudes because there is deep water formation in the Atlantic, but not in the Pacific. Because the depth of the middepth isopycnals is associated with the dynamics of the upper branch of the meridional overturning circulation (MOC), a model is formulated that quantitatively relates the sea level difference between the North Pacific and the Arctic/North Atlantic with the wind stress in the Antarctic Circumpolar region, since this forcing powers the MOC, and with the outcropping isopycnals shared between the Northern Hemisphere and the Antarctic circumpolar region, since this controls the location of deep water formation. This implies that if the sinking associated with the MOC were to occur in the North Pacific, rather than the North Atlantic, then the Bering Strait flow would reverse. These predictions, formalized in a theoretical box model, are confirmed by a series of numerical experiments in a simplified geometry of the World Ocean, forced by steady surface wind stress, temperature, and freshwater flux. 
    more » « less
  3. Abstract The Bering Strait oceanic heat transport influences seasonal sea ice retreat and advance in the Chukchi Sea. Monitored since 1990, it depends on water temperature and factors controlling the volume transport, assumed to be local winds in the strait and an oceanic pressure difference between the Pacific and Arctic oceans (the “pressure head”). Recent work suggests that variability in the pressure head, especially during summer, relates to the strength of the zonal wind in the East Siberian Sea that raises or drops sea surface height in this area via Ekman transport. We confirm that westward winds in the East Siberian Sea relate to a broader central Arctic pattern of high sea level pressure and note that anticyclonic winds over the central Arctic Ocean also favor low September sea ice extent for the Arctic as a whole by promoting ice convergence and positive temperature anomalies. Month‐to‐month persistence in the volume transport and atmospheric circulation patterns is low, but the period 1980–2017 had a significant summertime (June–August) trend toward higher sea level pressure over the central Arctic Ocean, favoring increased transports. Some recent large heat transports are associated with high water temperatures, consistent with persistence of open water in the Chukchi Sea into winter and early ice retreat in spring. The highest heat transport recorded, October 2016, resulted from high water temperatures and ideal wind conditions yielding a record‐high volume transport. November and December 2005, the only months with southward volume (and thus heat) transports, were associated with southward winds in the strait. 
    more » « less
  4. Abstract The Pacific oceanic input to the Arctic via the Bering Strait (important for western Arctic ice retreat, water properties, and nutrient supply) has been increasing for three decades. Using satellite Ocean Bottom Pressure (OBP) and Dynamic Ocean Topography (DOT) data, we show that long‐term trends in mooring data for a well‐sampled sub‐period (2003–2014) relate to summer OBP and DOT drop in the Arctic's East Siberian Sea (ESS), in turn caused by stronger westward ESS winds, and increased fall westward winds in the Bering Sea. OBP/DOT differences imply strong (0.17 psu/year) ESS salinization, likely caused by hitherto unappreciated increased Pacific inflow to that region. We find ESS OBP trends are (erroneously) reversed in older data versions, and estimate that ESS salinization may significantly mediate Bering Strait flow increase. These facts may explain why models assimilating older OBP data, or with erroneous Bering Strait salinities, fail to simulate observed Bering Strait flow increase. 
    more » « less
  5. Abstract A regional data‐constrained coupled ocean‐sea ice general circulation model and its adjoint are used to investigate mechanisms controlling the volume transport variability through Bering Strait during 2002 to 2013. Comprehensive time‐resolved sensitivity maps of Bering Strait transport to atmospheric forcing can be accurately computed with the adjoint along the forward model trajectory to identify spatial and temporal scales most relevant to the strait's transport variability. The simulated Bering Strait transport anomaly is found to be controlled primarily by the wind stress on short time scales of order 1 month. Spatial decomposition indicates that on monthly time scales winds over the Bering and the combined Chukchi and East Siberian Seas are the most significant drivers. Continental shelf waves and coastally trapped waves are suggested as the dominant mechanisms for propagating information from the far field to the strait. In years with transport extrema, eastward wind stress anomalies in the Arctic sector are found to be the dominant control, with correlation coefficient of 0.94. This implies that atmospheric variability over the Arctic plays a substantial role in determining Bering Strait flow variability. The near‐linear response of the transport anomaly to wind stress allows for predictive skill at interannual time scales, thus potentially enabling skillful prediction of changes at this important Pacific‐Arctic gateway, provided that accurate measurements of surface winds in the Arctic can be obtained. The novelty of this work is the use of space and time‐resolved adjoint‐based sensitivity maps, which enable detailed dynamical, that is, causal attribution of the impacts of different forcings. 
    more » « less