In face of an increasing number of automotive cyber-physical threat scenarios, the issue of adversarial destabilization of the lateral motion of target vehicles through direct attacks on their steering systems has been extensively studied. A more subtle question is whether a cyberattacker can destabilize the target vehicle lateral motion through improper engagement of the vehicle brakes and/or anti-lock braking systems (ABS). Motivated by such a question, this paper investigates the impact of cyber-physical attacks that exploit the braking/ABS systems to adversely affect the lateral motion stability of the targeted vehicles. Using a hybrid physical/dynamic tire-road friction model, it is shown that if a braking system/ABS attacker manages to continuously vary the longitudinal slips of the wheels, they can violate the necessary conditions for asymptotic stability of the underlying linear time-varying (LTV) dynamics of the lateral motion. Furthermore, the minimal perturbations of the wheel longitudinal slips that result in lateral motion instability under fixed slip values are derived. Finally, a real-time algorithm for monitoring the lateral motion dynamics of vehicles against braking/ABS cyber-physical attacks is devised. This algorithm, which can be efficiently computed using the modest computational resources of automotive embedded processors, can be utilized along with other intrusion detection techniques to infer whether a vehicle braking system/ABS is experiencing a cyber-physical attack. Numerical simulations in the presence of realistic CAN bus delays, destabilizing slip value perturbations obtained from solving quadratic programs on an embedded ARM Cortex-M3 emulator, and side-wind gusts demonstrate the effectiveness of the proposed methodology. 
                        more » 
                        « less   
                    This content will become publicly available on January 1, 2026
                            
                            An Efficient and Applicable Physical Fingerprinting Framework for the Controller Area Network Utilizing Deep Learning Algorithm Trained on Recurrence Plots
                        
                    
    
            The Controller Area Network (CAN) is widely used in the automotive industry for its ability to create inexpensive and fast networks. However, it lacks an authentication scheme, making vehicles vulnerable to spoofing attacks. Evidence shows that attackers can remotely control vehicles, posing serious risks to passengers and pedestrians. Several strategies have been proposed to ensure CAN data integrity by identifying senders based on physical layer characteristics, but high computational costs limit their practical use. This paper presents a framework to efficiently identify CAN bus system senders by fingerprinting them. By modeling the CAN sender identification problem as an image classification task, the need for expensive handcrafted feature engineering is eliminated, improving accuracy using deep neural networks. Experimental results show the proposed methodology achieves a maximum identification accuracy of 98.34%, surpassing the state-of-the-art method’s 97.13%. The approach also significantly reduces computational costs, cutting data processing time by a factor of 27, making it feasible for real-time application in vehicles. When tested on an actual vehicle, the proposed methodology achieved a no-attack detection rate of 97.78% and an attack detection rate of 100%, resulting in a combined accuracy of 98.89%. These results highlight the framework’s potential to enhance vehicle cybersecurity by reliably and efficiently identifying CAN bus senders. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10610774
- Publisher / Repository:
- Springer Nature Switzerland
- Date Published:
- Volume:
- volume 622
- ISSN:
- 978-3-031-93354-7
- ISBN:
- 978-3-031-93353-0
- Page Range / eLocation ID:
- 77 to 99
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            The landscape of automotive vehicle attack surfaces continues to grow, and vulnerabilities in the controller area network (CAN) expose vehicles to cyber-physical risks and attacks that can endanger the safety of passengers and pedestrians. Intrusion detection systems (IDS) for CAN have emerged as a key mitigation approach for these risks, but uniform methods to compare proposed IDS techniques are lacking. In this paper, we present a framework for comparative performance analysis of state-of-the-art IDSs for CAN bus to provide a consistent methodology to evaluate and assess proposed approaches. This framework relies on previously published datasets comprising message logs recorded from a real vehicle CAN bus coupled with traditional classifier performance metrics to reduce the discrepancies that arise when comparing IDS approaches from disparate sources.more » « less
- 
            The Controller Area Network (CAN) is a ubiquitous bus protocol present in the Electrical/Electronic (E/E) systems of almost all vehicles. It is vulnerable to a range of attacks once the attacker gains access to the bus through the vehicle’s attack surface. We address the problem of Intrusion Detection on the CAN bus and present a series of methods based on two classifiers trained with Auxiliary Classifier Generative Adversarial Network (ACGAN) to detect and assign fine-grained labels to Known Attacks and also detect the Unknown Attack class in a dataset containing a mixture of (Normal + Known Attacks + Unknown Attack) messages. The most effective method is a cascaded two-stage classification architecture, with the multi-class Auxiliary Classifier in the first stage for classification of Normal and Known Attacks, passing Out-of-Distribution (OOD) samples to the binary Real-Fake Classifier in the second stage for detection of the Unknown Attack class. Performance evaluation demonstrates that our method achieves both high classification accuracy and low runtime overhead, making it suitable for deployment in the resource-constrained in-vehicle environment.more » « less
- 
            Modern smart vehicles have a Controller Area Network (CAN) that supports intra-vehicle communication between intelligent Electronic Control Units (ECUs). The CAN is known to be vulnerable to various cyber attacks. In this paper, we propose a unified framework that can detect multiple types of cyber attacks (viz., Denial of Service, Fuzzy, Impersonation) affecting the CAN. Specifically, we construct a feature by observing the timing information of CAN packets exchanged over the CAN bus network over partitioned time windows to construct a low dimensional representation of the entire CAN network as a time series latent space. Then, we apply a two tier anomaly based intrusion detection model that keeps track of short term and long term memory of deviations in the initial time series latent space, to create a 'stateful latent space'. Then, we learn the boundaries of the benign stateful latent space that specify the attack detection criterion. To find hyper-parameters of our proposed model, we formulate a preference based multi-objective optimization problem that optimizes security objectives tailored for a network-wide time series anomaly based intrusion detector by balancing trade-offs between false alarm count, time to detection, and missed detection rate. We use real benign and attack datasets collected from a Kia Soul vehicle to validate our framework and show how our performance outperforms existing works.more » « less
- 
            null (Ed.)Vehicular communication has emerged as a powerful tool for providing a safe and comfortable driving experience for users. Long Term Evolution (LTE) supports and enhances the quality of vehicular communication due to its properties such as, high data rate, spatial reuse, and low delay. However, high mobility of vehicles introduces a wide variety of security threats, including Denial-of-Service (DoS) attacks. In this paper, we propose an effective solution for real-time detection and localization of DoS attacks in an LTE-based vehicular network with mobile network components (e.g., vehicles, femto access points, etc.). We consider malicious data transmission by vehicles in two ways - using real identification (unintentional) and using fake identification. Our attack detection technique is based on data packet counter and average packet delivery ratio which helps to efficiently detect attack faster than traditional approaches. We use triangulation method for localizing the attacker, and analyze average packet delay incurred by vehicles by modelling the system as an M/M/m queue. Simulation results demonstrate that our proposed technique significantly outperforms state-of-the-art techniques.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
