Abstract Fast empirical models of the broad emission line region (BLR) are a powerful tool to interpret velocity-resolved reverberation mapping (RM) data, estimate the mass of the supermassive black holes, and gain insight into its geometry and kinematics. Much of the effort so far has been devoted to describing the emissivity of one emission line at a time. We present here an alternative approach aimed at describing the underlying BLR gas distribution, by exploiting simple numerical recipes to connect it with emissivity. This approach is a step toward describing multiple emission lines originating from the same gas and allows us to clarify some issues related to the interpretation of RM data. We illustrate this approach—implemented in the codeCARAMEL-gas—using three data sets covering the Hβemission line (Mrk 50, Mrk 1511, Arp 151) that have been modeled using the emissivity-based version of the code. As expected, we find differences in the parameters describing the BLR gas and emissivity distribution, but the emissivity-weighted lag measurements and all other model parameters including black hole mass and overall BLR morphology and kinematics are consistent with the previous measurements. We also model the Hαemission line for Arp 151 using both the gas- and emissivity-based BLR models. We find ionization stratification in the BLR with Hαarising at larger radii than Hβ, while all other model parameters are consistent within the uncertainties.
more »
« less
Broad-line region geometry from multiple emission lines in a single-epoch spectrum
The broad-line region (BLR) of active galactic nuclei (AGNs) traces gas close to the central supermassive black hole (BH). Recent reverberation mapping (RM) and interferometric spectro-astrometry data have enabled detailed investigations of the BLR structure and dynamics as well as estimates of the BH mass. These exciting developments have motivated comparative investigations of BLR structures using different broad emission lines. In this work, we have developed a method to simultaneously model multiple broad lines of the BLR from a single-epoch spectrum. We applied this method to the five strongest broad emission lines (Hα, Hβ, Hγ, Paβ, and He Iλ5876) in the UV-to-near-IR spectrum of NGC 3783, a nearby Type I AGN that has been well studied by RM and interferometric observations. Fixing the BH mass to the published value, we fit these line profiles simultaneously to constrain the BLR structure. We find that the differences between line profiles can be explained almost entirely as being due to different radial distributions of the line emission. We find that using multiple lines in this way also enables one to measure some important physical parameters, such as the inclination angle and virial factor of the BLR. The ratios of the derived BLR time lags are consistent with the expectation of theoretical model calculations and RM measurements.
more »
« less
- Award ID(s):
- 1909711
- PAR ID:
- 10611457
- Publisher / Repository:
- Astronomy & Astrophysics
- Date Published:
- Journal Name:
- Astronomy & Astrophysics
- Volume:
- 684
- ISSN:
- 0004-6361
- Page Range / eLocation ID:
- A52
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
By using the GRAVITY instrument with the near-infrared (NIR) Very Large Telescope Interferometer (VLTI), the structure of the broad (emission-)line region (BLR) in active galactic nuclei (AGNs) can be spatially resolved, allowing the central black hole (BH) mass to be determined. This work reports new NIR VLTI/GRAVITY interferometric spectra for four type 1 AGNs (Mrk 509, PDS 456, Mrk 1239, and IC 4329A) with resolved broad-line emission. Dynamical modelling of interferometric data constrains the BLR radius and central BH mass measurements for our targets and reveals outflow-dominated BLRs for Mrk 509 and PDS 456. We present an updated radius-luminosity (R-L) relation independent of that derived with reverberation mapping (RM) measurements using all the GRAVITY-observed AGNs. We find our R-L relation to be largely consistent with that derived from RM measurements except at high luminosity, where BLR radii seem to be smaller than predicted. This is consistent with RM-based claims that high Eddington ratio AGNs show consistently smaller BLR sizes. The BH masses of our targets are also consistent with the standardMBH-σ*relation. Model-independent photocentre fitting shows spatial offsets between the hot dust continuum and the BLR photocentres (ranging from ∼17 μas to 140 μas) that are generally perpendicular to the alignment of the red- and blueshifted BLR photocentres. These offsets are found to be related to the AGN luminosity and could be caused by asymmetricK-band emission of the hot dust, shifting the dust photocentre. We discuss various possible scenarios that can explain this phenomenon.more » « less
-
Abstract The most reliable single-epoch supermassive black hole mass (MBH) estimates in quasars are obtained by using the velocity widths of low-ionization emission lines, typically the Hβλ4861 line. Unfortunately, this line is redshifted out of the optical band atz≈ 1, leavingMBHestimates to rely on proxy rest-frame ultraviolet (UV) emission lines, such as Civλ1549 or Mgiiλ2800, which contain intrinsic challenges when measuring, resulting in uncertainMBHestimates. In this work, we aim at correctingMBHestimates derived from the Civand Mgiiemission lines based on estimates derived from the Hβemission line. We find that employing the equivalent width of Civin derivingMBHestimates based on Mgiiand Civprovides values that are closest to those obtained from Hβ. We also provide prescriptions to estimateMBHvalues when only Civ, only Mgii, and both Civand Mgiiare measurable. We find that utilizing both emission lines, where available, reduces the scatter of UV-basedMBHestimates by ∼15% when compared to previous studies. Lastly, we discuss the potential of our prescriptions to provide more accurate and precise estimates ofMBHgiven a much larger sample of quasars at 3.20 ≲z≲ 3.50, where both Mgiiand Hβcan be measured in the same near-infrared spectrum.more » « less
-
We present JWST/NIRSpec integral field data of the quasar PJ308-21 atz = 6.2342. As shown by previous ALMA and HST imaging, the quasar has two companion sources, interacting with the quasar host galaxy. The high-resolution G395H/290LP NIRSpec spectrum covers the 2.87 − 5.27 μm wavelength range and shows the rest-frame optical emission of the quasar with exquisite quality (signal-to-noise ratio ∼100 − 400 per spectral element). Based on the Hβline from the broad line region, we obtain an estimate of the black hole massMBH, Hβ ∼ 2.7 × 109 M⊙. This value is within a factor ≲1.5 of the Hα-based black hole mass from the same spectrum (MBH, Hα ∼ 1.93 × 109 M⊙) and is consistent with a previous estimate relying on the Mg IIλ2799 line (MBH, MgII ∼ 2.65 × 109 M⊙). All theseMBHestimates are within the ∼0.5 dex intrinsic scatter of the adopted mass calibrations. The high Eddington ratio of PJ308-21λEdd, Hβ ∼ 0.67 (λEdd, Hα ∼ 0.96) is in line with the overall quasar population atz ≳ 6. The relative strengths of the [O III], Fe II, and Hβlines are consistent with the empirical “Eigenvector 1” correlations as observed for low redshift quasars. We find evidence for blueshifted [O III]λ5007 emission with a velocity offset Δv[O III] = −1922 ± 39 km s−1from the systemic velocity and a full width at half maximum (FWHM)FWHM([O III]) = 2776−74+75km s−1. This may be the signature of outflowing gas from the nuclear region, despite the true values of Δv[O III]andFWHM([O III]) likely being more uncertain due to the blending with Hβand Fe IIlines. Our study demonstrates the unique capabilities of NIRSpec in capturing quasar spectra at cosmic dawn and studying their properties in unprecedented detail.more » « less
-
Abstract The broad emission lines (BELs) emitted by active galactic nuclei respond to variations in the ionizing continuum emission from the accretion disk surrounding the central supermassive black hole (SMBH). This reverberation response provides insights into the structure and dynamics of the broad-line region (BLR). In 2024, we introduced a new forward-modeling tool, the Broad Emission Line Mapping Code (BELMAC), which simulates the velocity-resolved reverberation response of the BLR to an input light curve. In this work, we describe a new version of BELMAC, which uses photoionization models to calculate the cloud luminosities for selected BELs. We investigated the reverberation responses of Hα, Hβ, MgIIλ2800, and CIVλ1550 for models representing a disk-like BLR with Keplerian rotation, radiatively driven outflows, and inflows. The line responses generally provide a good indication of the respective luminosity-weighted radii. However, there are situations where the BLR exhibits a negative response to the driving continuum, causing overestimates of the luminosity-weighted radius. The virial mass derived from the models can differ dramatically from the actual SMBH mass, depending mainly on the disk inclination and velocity field. In single-zone models, the BELs exhibit similar responses and profile shapes; two-zone models, such as a Keplerian disk and a biconical outflow, can reproduce observed differences between high- and low-ionization lines. Radial flows produce asymmetric line profile shapes due to both anisotropic cloud emission and electron scattering in an intercloud medium. These competing attenuation effects complicate the interpretation of profile asymmetries.more » « less
An official website of the United States government

