To address the alerting issue of energy demand, lithium-ion capacitors (LICs) have been widely studied as promising electrochemical energy storage devices, which can deliver higher energy density than supercapacitors (SCs), and have higher power density with longer cycling life than lithium-ion batteries (LIBs). In this work, the active material lithium nickel cobalt manganese oxide LiNi0.5Co0.2Mn0.3O2(NCM523) is grown on a cotton textile template and building a 3-dimensional (3D) integrity to improve capacitance and energy density of LICs by enhancing the interfacial ion-exchange process. With the 3D structure, the specific discharge capacitance is increased to 718.67 at 0.1 from that of non-textile NCM523 (265.97 ), and remains a high capacitance of 254.48 at 10 in the half-cell capacitors. In addition, the energy density can achieve up to 36.17 at the power density of 1,200 in the full-cell capacitor. The textile NCM can maintain an energy density of 28.26 at the current density of 10 and power density of 6,000 . Our results present promising applications of electrodes with the 3D porous structure for high energy density LICs.
more »
« less
This content will become publicly available on June 25, 2026
Detection of wave activity in measurements of thermospheric vertical winds and temperatures at subauroral latitudes
The need for high precision measurements of vertical winds with uncertainties on the scale of 3–5 m and a temporal cadence of 1–2 min to achieve detection of gravity wave (GW) structure has made it exceedingly difficult to study the response of the thermosphere to the propagation of GW activity. Herein we present subauroral, midlatitude thermospheric wind and temperature observations using redline 630 nm measurements obtained with a 15 cm narrow field Fabry-Pérot Interferometer (FPI), named the Hot Oxygen Doppler Imager (HODI). These measurements were obtained in a first light campaign at Jeffer Observatory ( N, W) located in Jenny Jump State Forest in northwestern New Jersey. The heightened sensitivity of HODI enables analysis of observations with uncertainties of approximately 3–5 m for vertical wind speeds and 10–15 K for temperatures for 2-min exposures. Data was collected during periods of both geomagnetically quiet and active conditions, and GW structures were seen in both data sets. One detailed observation, taken the night of 25 July 2022, enabled the phase shift between vertical winds and temperatures to be inferred, as per standard GW polarization relations with weak viscous dissipation. However, most other observations are found to have little correlation between the two series of temperature and vertical wind. We interpret this to be a result of the propagation and interaction of multiple GW events superimposed upon one another. Wave-like structures in the ionosphere observed in differential total electron count maps, or traveling ionospheric disturbances (TIDs), are often related to GW induced processes, and we provide comparisons of selected wave events observed by HODI to TIDs. These results suggest in a general sense that a relationship may exist between wave fluctuations seen in both the neutral atmosphere and the ionosphere. However, we suggest that the 35–70 km vertical extent of the 630 nm nightglow layer combined with an environment of multiple GW events with differing propagation speeds and vertical wavelengths may have the effect of diminishing or eliminating possible existing temperature and vertical wind correlation.
more »
« less
- PAR ID:
- 10612068
- Publisher / Repository:
- Frontiers
- Date Published:
- Journal Name:
- Frontiers in Astronomy and Space Sciences
- Volume:
- 12
- ISSN:
- 2296-987X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The search for neutrino events in correlation with gravitational wave (GW) events for three observing runs (O1, O2 and O3) from 09/2015 to 03/2020 has been performed using the Borexino data-set of the same period. We have searched for signals of neutrino-electron scattering and inverse beta-decay (IBD) within a time window of$$\pm \, 1000$$ s centered at the detection moment of a particular GW event. The search was done with three visible energy thresholds of 0.25, 0.8 and 3.0 MeV. Two types of incoming neutrino spectra were considered: the mono-energetic line and the supernova-like spectrum. GW candidates originated by merging binaries of black holes (BHBH), neutron stars (NSNS) and neutron star and black hole (NSBH) were analyzed separately. Additionally, the subset of most intensive BHBH mergers at closer distances and with larger radiative mass than the rest was considered. In total, follow-ups of 74 out of 93 gravitational waves reported in the GWTC-3 catalog were analyzed and no statistically significant excess over the background was observed. As a result, the strongest upper limits on GW-associated neutrino and antineutrino fluences for all flavors ($$\nu _e, \nu _\mu , \nu _\tau $$ ) at the level$$10^9{-}10^{15}~\textrm{cm}^{-2}\,\textrm{GW}^{-1}$$ have been obtained in the 0.5–5 MeV neutrino energy range.more » « less
-
Abstract A search is reported for charge-parity$$CP$$ violation in$${{{\textrm{D}}}^{{0}}} \rightarrow {{\textrm{K}} _{\text {S}}^{{0}}} {{\textrm{K}} _{\text {S}}^{{0}}} $$ decays, using data collected in proton–proton collisions at$$\sqrt{s} = 13\,\text {Te}\hspace{-.08em}\text {V} $$ recorded by the CMS experiment in 2018. The analysis uses a dedicated data set that corresponds to an integrated luminosity of 41.6$$\,\text {fb}^{-1}$$ , which consists of about 10 billion events containing a pair of b hadrons, nearly all of which decay to charm hadrons. The flavor of the neutral D meson is determined by the pion charge in the reconstructed decays$${{{\textrm{D}}}^{{*+}}} \rightarrow {{{\textrm{D}}}^{{0}}} {{{\mathrm{\uppi }}}^{{+}}} $$ and$${{{\textrm{D}}}^{{*-}}} \rightarrow {\overline{{\textrm{D}}}^{{0}}} {{{\mathrm{\uppi }}}^{{-}}} $$ . The$$CP$$ asymmetry in$${{{\textrm{D}}}^{{0}}} \rightarrow {{\textrm{K}} _{\text {S}}^{{0}}} {{\textrm{K}} _{\text {S}}^{{0}}} $$ is measured to be$$A_{CP} ({{\textrm{K}} _{\text {S}}^{{0}}} {{\textrm{K}} _{\text {S}}^{{0}}} ) = (6.2 \pm 3.0 \pm 0.2 \pm 0.8)\%$$ , where the three uncertainties represent the statistical uncertainty, the systematic uncertainty, and the uncertainty in the measurement of the$$CP$$ asymmetry in the$${{{\textrm{D}}}^{{0}}} \rightarrow {{\textrm{K}} _{\text {S}}^{{0}}} {{{\mathrm{\uppi }}}^{{+}}} {{{\mathrm{\uppi }}}^{{-}}} $$ decay. This is the first$$CP$$ asymmetry measurement by CMS in the charm sector as well as the first to utilize a fully hadronic final state.more » « less
-
Abstract A test of lepton flavor universality in and decays, as well as a measurement of differential and integrated branching fractions of a nonresonant decay are presented. The analysis is made possible by a dedicated data set of proton-proton collisions at recorded in 2018, by the CMS experiment at the LHC, using a special high-rate data stream designed for collecting about 10 billion unbiased b hadron decays. The ratio of the branching fractions to is determined from the measured double ratio of these decays to the respective branching fractions of the with and decays, which allow for significant cancellation of systematic uncertainties. The ratio is measured in the range , whereqis the invariant mass of the lepton pair, and is found to be , in agreement with the standard model expectation . This measurement is limited by the statistical precision of the electron channel. The integrated branching fraction in the sameq2range, , is consistent with the present world-average value and has a comparable precision.more » « less
-
Abstract Let$$(h_I)$$ denote the standard Haar system on [0, 1], indexed by$$I\in \mathcal {D}$$ , the set of dyadic intervals and$$h_I\otimes h_J$$ denote the tensor product$$(s,t)\mapsto h_I(s) h_J(t)$$ ,$$I,J\in \mathcal {D}$$ . We consider a class of two-parameter function spaces which are completions of the linear span$$\mathcal {V}(\delta ^2)$$ of$$h_I\otimes h_J$$ ,$$I,J\in \mathcal {D}$$ . This class contains all the spaces of the formX(Y), whereXandYare either the Lebesgue spaces$$L^p[0,1]$$ or the Hardy spaces$$H^p[0,1]$$ ,$$1\le p < \infty $$ . We say that$$D:X(Y)\rightarrow X(Y)$$ is a Haar multiplier if$$D(h_I\otimes h_J) = d_{I,J} h_I\otimes h_J$$ , where$$d_{I,J}\in \mathbb {R}$$ , and ask which more elementary operators factor throughD. A decisive role is played by theCapon projection$$\mathcal {C}:\mathcal {V}(\delta ^2)\rightarrow \mathcal {V}(\delta ^2)$$ given by$$\mathcal {C} h_I\otimes h_J = h_I\otimes h_J$$ if$$|I|\le |J|$$ , and$$\mathcal {C} h_I\otimes h_J = 0$$ if$$|I| > |J|$$ , as our main result highlights: Given any bounded Haar multiplier$$D:X(Y)\rightarrow X(Y)$$ , there exist$$\lambda ,\mu \in \mathbb {R}$$ such that$$\begin{aligned} \lambda \mathcal {C} + \mu ({{\,\textrm{Id}\,}}-\mathcal {C})\text { approximately 1-projectionally factors through }D, \end{aligned}$$ i.e., for all$$\eta > 0$$ , there exist bounded operatorsA, Bso thatABis the identity operator$${{\,\textrm{Id}\,}}$$ ,$$\Vert A\Vert \cdot \Vert B\Vert = 1$$ and$$\Vert \lambda \mathcal {C} + \mu ({{\,\textrm{Id}\,}}-\mathcal {C}) - ADB\Vert < \eta $$ . Additionally, if$$\mathcal {C}$$ is unbounded onX(Y), then$$\lambda = \mu $$ and then$${{\,\textrm{Id}\,}}$$ either factors throughDor$${{\,\textrm{Id}\,}}-D$$ .more » « less
An official website of the United States government
