Summary Phenotypic and genomic diversity inArabidopsis thalianamay be associated with adaptation along its wide elevational range, but it is unclear whether elevational clines are consistent among different mountain ranges.We took a multi‐regional view of selection associated with elevation. In a diverse panel of ecotypes, we measured plant traits under alpine stressors (low CO2partial pressure, high light, and night freezing) and conducted genome‐wide association studies.We found evidence of contrasting locally adaptive regional clines. Western Mediterranean ecotypes showed low water use efficiency (WUE)/early flowering at low elevations to high WUE/late flowering at high elevations. Central Asian ecotypes showed the opposite pattern. We mapped different candidate genes for each region, and some quantitative trait loci (QTL) showed elevational and climatic clines likely maintained by selection. Consistent with regional heterogeneity, trait and QTL clines were evident at regional scales (c. 2000 km) but disappeared globally. Antioxidants and pigmentation rarely showed elevational clines. High elevation east African ecotypes might have higher antioxidant activity under night freezing.Physiological and genomic elevational clines in different regions can be unique, underlining the complexity of local adaptation in widely distributed species, while hindering global trait–environment or genome–environment associations. To tackle the mechanisms of range‐wide local adaptation, regional approaches are thus warranted.
more »
« less
Local adaptation of both plant and pathogen: an arms‐race compromise in switchgrass rust
Summary In coevolving species, parasites locally adapt to host populations as hosts locally adapt to resist parasites. Parasites often outpace host local adaptation since they have rapid life cycles, but host diversity, the strength of selection, and external environmental influence can result in complex outcomes.To better understand local adaptation in host–parasite systems, we examined locally adapted switchgrass (Panicum virgatum), and its leaf rust pathogen (Puccinia novopanici) across a latitudinal range in North America. We grew switchgrass genotypes in 10 replicated multiyear common gardens, measuring rust severity from natural infection in a ‘host reciprocal transplant’ framework for testing local adaptation. We conducted genome‐wide association mapping to identify genetic loci associated with rust severity.Genetically differentiated rust populations were locally adapted to northern and southern switchgrass, despite host local adaptation to environmental conditions in the same regions. Rust resistance was polygenic, and distinct loci were associated with rust severity in the north and south. We narrowed a previously identified large‐effect quantitative trait locus for rust severity to a candidate YELLOW STRIPE‐LIKE gene and linked numerous other loci to defense‐related genes.Overall, our results suggest that both hosts and parasites can be simultaneously locally adapted, especially when parasites impose less selection than other environmental factors.
more »
« less
- Award ID(s):
- 1832042
- PAR ID:
- 10613696
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- New Phytologist
- ISSN:
- 0028-646X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Host populations often vary in the magnitude of coinfection they experience across environmental gradients. Furthermore, coinfection often occurs sequentially, with a second parasite infecting the host after the first has established a primary infection. Because the local environment and interactions between coinfecting parasites can both drive patterns of coinfection, it is important to disentangle the relative contributions of environmental factors and within‐host interactions to patterns of coinfection.Here, we develop a conceptual framework and present an empirical case study to disentangle these facets of coinfection. Across multiple lakes, we surveyed populations of five damselfly (host) species and quantified primary parasitism by aquatic, ectoparasitic water mites and secondary parasitism by terrestrial, endoparasitic gregarines. We first asked if coinfection is predicted by abiotic and biotic factors within the local environment, finding that the probability of coinfection decreased for all host species as pH increased. We then asked if primary infection by aquatic water mites mediated the relationship between pH and secondary infection by terrestrial gregarines.Contrary to our expectations, we found no evidence for a water mite‐mediated relationship between pH and gregarines. Instead, the intensity of gregarine infection correlated solely with the local environment, with the magnitude and direction of these relationships varying among environmental predictors.Our findings emphasize the role of the local environment in shaping infection dynamics that set the stage for coinfection. Although we did not detect within‐host interactions, the approach herein can be applied to other systems to elucidate the nature of interactions between hosts and coinfecting parasites within complex ecological communities.more » « less
-
Abstract Litter decomposition facilitates the recycling of often limiting resources, which may promote plant productivity responses to diversity, that is, overyielding. However, the direct relationship between decomposition,k, and overyielding remains underexplored in grassland diversity manipulations.We test whether local adaptation of microbes, that is, home‐field advantage (HFA), N‐priming from plant inputs or precipitation drive decomposition and whether decomposition generates overyielding. Within a grassland diversity‐manipulation, altering plant richness (1, 2, 3 and 6 species), composition (communities composed of plants from a single‐family or multiple‐families) and precipitation (50% and 150% ambient growing season precipitation), we conducted a litter decomposition experiment. In spring 2020, we deployed four replicate switchgrass,Panicum virgatum, litter bags (1.59 mm mesh opening), collecting them over 7 months to estimate litterk.Precipitation was a strong, independent driver of decomposition. Switchgrass decomposition accelerated with grass richness and decelerated as phylogenetic dissimilarity from switchgrass increased, suggesting decomposition is fastest at ‘home’. However, decomposition slowed with switchgrass density. In plots that contained switchgrass, we observed no relationship between decomposition and fungal saprotroph dissimilarity from switchgrass. However, in plots without switchgrass, decomposition slowed with increasing saprotroph dissimilarity from switchgrass. Combined these findings suggest that HFA is strongest when closely related neighbours, that is, heterospecific neighbours, are present in the community, rather than other individuals of the same species, that is, conspecifics. Legumes accelerated decomposition with more litter N remaining in those plots, suggesting that N‐inputs from planted legumes are priming decomposition of litter C. However, decomposition and overyielding were unrelated in legume communities. While in grass communities, overyielding and decomposition were positively related and the relationship was strongest in plots with low densities of switchgrass, that is, with heterospecific neighbours.Combined these findings suggest that plant species richness and community composition stimulate litter decomposition through multiple mechanisms, including N‐priming, but only HFA from local adaptation of microbes on closely related species correlates with overyielding, likely through resource recycling. Our results link diversity with ecosystem processes facilitating above‐ground productivity. Whether diversity loss will affect litter decomposition, productivity or both is contingent on resident plant traits and whether a locally adapted soil microbiome is maintained. Read the freePlain Language Summaryfor this article on the Journal blog.more » « less
-
Summary Joshua trees are long‐lived perennial monocots native to the Mojave Desert in North America. Composed of two species,Yucca brevifoliaandY. jaegeriana(Asparagaceae), Joshua trees are imperiled by climate change, with decreases in suitable habitat predicted under future climate change scenarios. Relatively little is understood about the ecophysiology of Joshua trees across their range, including the extent to which populations are locally adapted or phenotypically plastic to environmental stress.Plants in our common gardens showed evidence of Crassulacean acid metabolism photosynthesis (CAM) in a pilot experiment, despite no prior report of this photosynthetic pathway in these species. We further studied the variation and strength of CAM within a single common garden, measuring seedlings representing populations across the range of the two species.A combination of physiology and transcriptomic data showed low levels of CAM that varied across populations but were unrelated to home environmental conditions. Gene expression confirmed CAM activity and further suggested differences in carbon and nitrogen metabolism betweenY. brevifoliaandY. jaegeriana.Together the results suggest greater physiological diversity between these species than initially expected, particularly at the seedling stage, with implications for future survival of Joshua trees under a warming climate.more » « less
-
Abstract Flowering phenology can vary considerably even at fine spatial scales, potentially leading to temporal reproductive isolation among habitat patches. Climate change could alter flowering synchrony, and hence temporal isolation, if plants in different microhabitats vary in their phenological response to climate change. Despite the importance of temporal isolation in determining patterns of gene flow, and hence population genetic structure and local adaptation, little is known about how changes in climate affect temporal isolation within populations.Here, we use flowering phenology and floral abundance data of 50 subalpine plant species over 44 years to test whether temporal isolation between habitat patches is affected by spring temperature. For each species and year, we analysed temporal separation in peak flowering and flowering overlap between habitat patches separated by 5–950 m.Across our study species, warmer springs were associated with more temporal differentiation in flowering peaks among habitat patches, and less flowering overlap, increasing potential for temporal isolation within populations.Synthesis. By reducing opportunities for mating among plants in nearby habitat patches, our results suggest that warmer springs may reduce opportunities for gene flow within populations, and, consequently, the capacity of plant populations to adapt to environmental changes.more » « less
An official website of the United States government

