Abstract The demonstration of epitaxial thin film transfer has enormous potential for thin film devices free from the traditional substrate epitaxy limitations. However, large‐area continuous film transfer remains a challenge for the commonly reported polymer‐based transfer methods due to bending and cracking during transfer, especially for highly strained epitaxial thin films. In this work, a new epoxy‐based, rigid transfer method is used to transfer films from an SrTiO3(STO) growth substrate onto various new substrates, including those that will typically pose significant problems for epitaxy. An epitaxial multiferroic Bi3Fe2Mn2Ox(BFMO) layered supercell (LSC) material is selected as the thin film for this demonstration. The results of surface and structure studies show an order of magnitude increase in the continuous area of transferred films when compared to previous transfer methods. The magnetic properties of the BFMO LSC films are shown to be enhanced by the release of strain in this method, and ferromagnetic resonance is found with an exceptionally low Gilbert damping coefficient. The large‐area transfer of this highly strained complex oxide BFMO thin film presents enormous potential for the integration of many other multifunctional oxides onto new substrates for future magnetic sensors and memory devices.
more »
« less
This content will become publicly available on April 1, 2026
Epitaxial Thin Film Growth on Recycled SrTiO 3 Substrates Toward Sustainable Processing of Complex Oxides
Abstract Complex oxide thin films cover a range of physical properties and multifunctionalities that are critical for logic, memory, and optical devices. Typically, the high‐quality epitaxial growth of these complex oxide thin films requires single crystalline oxide substrates such as SrTiO3(STO), MgO, LaAlO3, a‐Al2O3,and many others. Recent successes in transferring these complex oxides as free‐standing films not only offer great opportunities in integrating complex oxides on other devices, but also present enormous opportunities in recycling the deposited substrates after transfer for cost‐effective and sustainable processing of complex oxide thin films. In this work, the surface modification effects introduced on the recycled STO are investigated, and their impacts on the microstructure and properties of subsequently grown epitaxial oxide thin films are assessed and compared with those grown on the pristine substrates. Detailed analyses using high‐resolution scanning transmission electron microscopy and geometric phase analysis demonstrate distinct strain states on the surfaces of the recycled STO versus the pristine substrates, suggesting a pre‐strain state in the recycled STO substrates due to the previous deposition layer. These findings offer opportunities in growing highly mismatched oxide films on the recycled STO substrates with enhanced physical properties. Specifically, yttrium iron garnet (Y3Fe5O12) films grown on recycled STO present different ferromagnetic responses compared to that on the pristine substrates, underscoring the effects of surface modification. The study demonstrates the feasibility of reuse and redeposition using recycled substrates. Via careful handling and preparation, high‐quality epitaxial thin films can be grown on recycled substrates with comparable or even better structural and physical properties toward sustainable process of complex oxide devices.
more »
« less
- PAR ID:
- 10614304
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Small Methods
- Volume:
- 9
- Issue:
- 4
- ISSN:
- 2366-9608
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Controlling the growth of complex relaxor ferroelectric thin films and understanding the relationship between biaxial strain–structural domain characteristics are desirable for designing materials with a high electromechanical response. For this purpose, epitaxial thin films free of extended defects and secondary phases are urgently needed. Here, we used optimized growth parameters and target compositions to obtain epitaxial (40–45 nm) 0.67Pb(Mg 1/3 Nb 2/3 )O 3 –0.33PbTiO 3 /(20 nm) SrRuO 3 (PMN–33PT/SRO) heterostructures using pulsed-laser deposition (PLD) on singly terminated SrTiO 3 (STO) and ReScO 3 (RSO) substrates with Re = Dy, Tb, Gd, Sm, and Nd. In situ reflection high-energy electron diffraction (RHEED) and high-resolution X-ray diffraction (HR-XRD) analysis confirmed high-quality and single-phase thin films with smooth 2D surfaces. High-resolution scanning transmission electron microscopy (HR-STEM) revealed sharp interfaces and homogeneous strain further confirming the epitaxial cube-on-cube growth mode of the PMN–33PT/SRO heterostructures. The combined XRD reciprocal space maps (RSMs) and piezoresponse force microscopy (PFM) analysis revealed that the domain structure of the PMN–33PT heterostructures is sensitive to the applied compressive strain. From the RSM patterns, an evolution from a butterfly-shaped diffraction pattern for mildly strained PMN–33PT layers, which is evidence of stabilization of relaxor domains, to disc-shaped diffraction patterns for high compressive strains with a highly distorted tetragonal structure, is observed. The PFM amplitude and phase of the PMN–33PT thin films confirmed the relaxor-like for a strain state below ∼1.13%, while for higher compressive strain (∼1.9%) the irregularly shaped and poled ferroelectric domains were observed. Interestingly, the PFM phase hysteresis loops of the PMN–33PT heterostructures grown on the SSO substrates (strain state of ∼0.8%) exhibited an enhanced coercive field which is about two times larger than that of the thin films grown on GSO and NSO substrates. The obtained results show that epitaxial strain engineering could serve as an effective approach for tailoring and enhancing the functional properties in relaxor ferroelectrics.more » « less
-
Magnetic and ferroelectric oxide thin films have long been studied for their applications in electronics, optics, and sensors. The properties of these oxide thin films are highly dependent on the film growth quality and conditions. To maximize the film quality, epitaxial oxide thin films are frequently grown on single‐crystal oxide substrates such as strontium titanate (SrTiO3) and lanthanum aluminate (LaAlO3) to satisfy lattice matching and minimize defect formation. However, these single‐crystal oxide substrates cannot readily be used in practical applications due to their high cost, limited availability, and small wafer sizes. One leading solution to this challenge is film transfer. In this demonstration, a material from a new class of multiferroic oxides is selected, namely bismuth‐based layered oxides, for the transfer. A water‐soluble sacrificial layer of Sr3Al2O6is inserted between the oxide substrate and the film, enabling the release of the film from the original substrate onto a polymer support layer. The films are transferred onto new substrates of silicon and lithium niobate (LiNbO3) and the polymer layer is removed. These substrates allow for the future design of electronic and optical devices as well as sensors using this new group of multiferroic layered oxide films.more » « less
-
Abstract Strong coupling between polarization (P) and strain (ɛ) in ferroelectric complex oxides offers unique opportunities to dramatically tune their properties. Here colossal strain tuning of ferroelectricity in epitaxial KNbO3thin films grown by sub‐oxide molecular beam epitaxy is demonstrated. While bulk KNbO3exhibits three ferroelectric transitions and a Curie temperature (Tc) of ≈676 K, phase‐field modeling predicts that a biaxial strain of as little as −0.6% pushes itsTc> 975 K, its decomposition temperature in air, and for −1.4% strain, toTc> 1325 K, its melting point. Furthermore, a strain of −1.5% can stabilize a single phase throughout the entire temperature range of its stability. A combination of temperature‐dependent second harmonic generation measurements, synchrotron‐based X‐ray reciprocal space mapping, ferroelectric measurements, and transmission electron microscopy reveal a single tetragonal phase from 10 K to 975 K, an enhancement of ≈46% in the tetragonal phase remanent polarization (Pr), and a ≈200% enhancement in its optical second harmonic generation coefficients over bulk values. These properties in a lead‐free system, but with properties comparable or superior to lead‐based systems, make it an attractive candidate for applications ranging from high‐temperature ferroelectric memory to cryogenic temperature quantum computing.more » « less
-
Bi2NiMnO6(BNMO) epitaxial thin films with a layered supercell (LSC) structure have emerged as a promising single‐phase multiferroic material recently. Because of the required strain state for the formation of the LSC structures, most of the previous BNMO films are demonstrated on rigid oxide substrates such as SrTiO3and LaAlO3. Here, the potential of BNMO films grown on muscovite mica substrates via van der Waals epitaxy, spotlighting their suitability for cutting‐edge flexible device applications is delved. Comprehensive scanning transmission electron microscopy/energy‐dispersive X‐ray analyses reveal a layered structure in the BNMO film and a pristine interface with the mica substrate, indicating high‐quality deposition and minimal interfacial defects. Capitalizing on its unique property of easily cleavable layers due to weak van der Waals forces in mica substrates, flexible BNMO/mica samples are fixed. A standout feature of the BNMO film grown on mica substrate is its consistent multiferroic properties across varied mechanical conditions. A novel technique is introduced for thinning the mica substrate and subsequent transfer of the sample, with post‐transfer analyses validating the preserved structural and magnetic attributes of the film. Overall, this study illuminates the resilient multiferroic properties of BNMO films on mica, offering promising avenues for their integration for next‐generation flexible electronics.more » « less
An official website of the United States government
