skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Neighborhood Approach for Using Remotely Sensed Data to Estimate Current Ranges for Conservation Assessments
ABSTRACT Species distribution modeling can be used to predict environmental suitability, and removing areas currently lacking appropriate vegetation can refine range estimates for conservation assessments. However, the uncertainty around geographic coordinates can exceed the fine resolution of remotely sensed habitat data. Here, we present a novel methodological approach to reflect this reality by processing habitat data to maintain its fine resolution, but with new values characterizing a larger surrounding area (the “neighborhood”). We implement its use for a forest‐dwelling species (Handleyomys chapmani) considered threatened by the IUCN. We determined deforestation tolerance threshold values by matching occurrence records with forest cover data using two methods: (1) extracting the exact pixel value where a record fell; and (2) using the neighborhood value (more likely to characterize conditions within the radius of actual sampling). We removed regions below these thresholds from the climatic suitability prediction, identifying areas of inferred habitat loss. We calculated Extent of Occurrence (EOO) and Area of Occupancy (AOO), two metrics used by the IUCN for threat level categorization. The values estimated here suggest removing the species from threatened categories. However, the results highlight spatial patterns of loss throughout the range not reflected in these metrics, illustrating drawbacks of EOO and showing how localized losses largely disappeared when resampling to the 2 × 2 km grid required for AOO. The neighborhood approach can be applied to various data sources (NDVI, soils, marine, etc.) to calculate trends over time and should prove useful to many terrestrial and aquatic species. It is particularly useful for species having high coordinate uncertainty in regions of low spatial autocorrelation (where small georeferencing errors can lead to great differences in habitat, misguiding conservation assessments used in policy decisions). More generally, this study illustrates and enhances the practicality of using habitat‐refined distribution maps for biogeography and conservation.  more » « less
Award ID(s):
2002202 1661510
PAR ID:
10615853
Author(s) / Creator(s):
; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Ecology and Evolution
Volume:
15
Issue:
7
ISSN:
2045-7758
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Understanding the distribution and extent of suitable habitats is critical for the conservation of endangered and endemic taxa. Such knowledge is limited for many Central African species, including the rare and globally threatened Grey-necked Picathartes Picathartes oreas, one of only two species in the family Picathartidae endemic to the forests of Central Africa. Despite growing concerns about land-use change resulting in fragmentation and loss of forest cover in the region, neither the extent of suitable habitat nor the potential species’ distribution is well known. We combine 339 (new and historical) occurrence records of Grey-necked Picathartes with environmental variables to model the potential global distribution. We used a Maximum Entropy modelling approach that accounted for sampling bias. Our model suggests that Grey-necked Picathartes distribution is strongly associated with steeper slopes and high levels of forest cover, while bioclimatic, vegetation health, and habitat condition variables were all excluded from the final model. We predicted 17,327 km2 of suitable habitat for the species, of which only 2,490 km2 (14.4%) are within protected areas where conservation designations are strictly enforced. These findings show a smaller global distribution of predicted suitable habitat for the Grey-necked Picathartes than previously thought. This work provides evidence to inform a revision of the International Union for Conservation of Nature (IUCN) Red List status, and may warrant upgrading the status of the species from “Near Threatened” to “Vulnerable”. 
    more » « less
  2. Societal Impact StatementThe current rate of global biodiversity loss creates a pressing need to increase efficiency and throughput of extinction risk assessments in plants. We must assess as many plant species as possible, working with imperfect knowledge, to address the habitat loss and extinction threats of the Anthropocene. Using the biodiversity database, Botanical Information and Ecology Network (BIEN), and the Andropogoneae grass tribe as a case study, we demonstrate that large‐scale, preliminary conservation assessments can play a fundamental role in accelerating plant conservation pipelines and setting priorities for more in‐depth investigations. SummaryThe International Union for the Conservation of Nature (IUCN) Red List criteria are widely used to determine extinction risks of plant and animal life. Here, we used The Red List's criterion B, Geographic Range Size, to provide preliminary conservation assessments of the members of a large tribe of grasses, the Andropogoneae, with ~1100 species, including maize, sorghum, and sugarcane and their wild relatives.We used georeferenced occurrence data from the Botanical Information and Ecology Network (BIEN) and automated individual species assessments using ConR to demonstrate efficacy and accuracy in using time‐saving tools for conservation research. We validated our results with those from the IUCN‐recommended assessment tool, GeoCAT.We discovered a remarkably large gap in digitized information, with slightly more than 50% of the Andropogoneae lacking sufficient information for assessment. ConR and GeoCAT largely agree on which taxa are of least concern (>90%) or possibly threatened (<10%), highlighting that automating assessments with ConR is a viable strategy for preliminary conservation assessments of large plant groups. Results for crop wild relatives are similar to those for the entire dataset.Increasing digitization and collection needs to be a high priority. Available rapid assessment tools can then be used to identify species that warrant more comprehensive investigation. 
    more » « less
  3. Abstract Reliable maps of species distributions are fundamental for biodiversity research and conservation. The International Union for Conservation of Nature (IUCN) range maps are widely recognized as authoritative representations of species’ geographic limits, yet they might not always align with actual occurrence data. In recent area of habitat (AOH) maps, areas that are not habitat have been removed from IUCN ranges to reduce commission errors, but their concordance with actual species occurrence also remains untested. We tested concordance between occurrences recorded in camera trap surveys and predicted occurrences from the IUCN and AOH maps for 510 medium‐ to large‐bodied mammalian species in 80 camera trap sampling areas. Across all areas, cameras detected only 39% of species expected to occur based on IUCN ranges and AOH maps; 85% of the IUCN only mismatches occurred within 200 km of range edges. Only 4% of species occurrences were detected by cameras outside IUCN ranges. The probability of mismatches between cameras and the IUCN range was significantly higher for smaller‐bodied mammals and habitat specialists in the Neotropics and Indomalaya and in areas with shorter canopy forests. Our findings suggest that range and AOH maps rarely underrepresent areas where species occur, but they may more often overrepresent ranges by including areas where a species may be absent, particularly at range edges. We suggest that combining range maps with data from ground‐based biodiversity sensors, such as camera traps, provides a richer knowledge base for conservation mapping and planning. 
    more » « less
  4. Subterranean ecosystems harbor globally important yet highly threatened biodiversity. Unfortunately, subterranean biodiversity is often neglected in regional and global conservation initiatives, including conservation assessments. We reviewed the conservation status and threats to subterranean species based on the two most popular conservation assessment protocols in North America, NatureServe and International Union for Conservation of Nature (IUCN) Red List, as well as federal and state/provincial protection status of the 1,460 described cave-obligate species occurring in the United States and Canada. Only 9.3% of species have been assessed under IUCN Red List criteria compared to 77.9% of species assessed under NatureServe criteria; notably, 1,065 and 116 of species are assessed at an elevated risk of extinction by NatureServe and IUCN Red List, respectively. Just 41 species are listed or proposed to be listed under the U.S. Endangered Species Act and none of the 10 species that occur in Canada are federally listed. Vertebrates (fishes and salamanders), decapods (crayfishes and shrimps), and U.S. federally listed species are overrepresented on the list of species with IUCN Red List assessments compared to other taxonomic groups, particularly arachnids, millipedes, and insects. Most species assessed under IUCN Red List criteria as well as federally listed species occur in the Edwards Plateau and Balcones Escarpment karst region of Texas. Major threats frequently reported in conservation assessments include habitat degradation, pollution/contamination, recreational activities, climate change, and groundwater exploitation; however, information on threats was lacking for most species for nearly all major taxonomic groups, except decapods, fishes, and salamanders. The intrinsic vulnerability of subterranean biodiversity coupled with the many potential threats facing species and extensive biodiversity knowledge gaps makes assessing their conservation status and ultimately their protection a challenging endeavor. We highlight several limitations of implementing current conservation assessment approaches while offering recommendations to improve our ability to assess the conservation status of subterranean biodiversity to better inform sound local to global conservation policies and actions. 
    more » « less
  5. Sparrow, David (Ed.)
    Species distribution models (SDMs) were created for 509 Nearctic and 402 Palaearctic species of dragonflies and damselflies (Odonata). Species occurrence data were assembled by reviewing databases of specimens held by significant Odonata repositories and through an extensive search of literature references for the whole of the Nearctic and Palaearctic (excluding China and the Himalayan region). Species were categorized as forest-dependent or non-forest-dependent (Nearctic only), as lentic or lotic-dependent, and according to conservation status. Predicted distributions were stacked for all species across their entire ranges, including areas outside of the Nearctic and Palaearctic. Species richness and corrected weighted endemism (CWE) were then calculated for each grid cell. We found a pattern of greater species richness in the eastern portion of the Nearctic, which can be explained by the higher aquatic habitat diversity at micro and macroscales east of the Rocky Mountains, promoting niche partitioning and specialization. In the Nearctic region, the southeastern US has the highest number of endemic species of dragonflies and damselflies; this degree of endemism is likely due to glacial refuges providing a foundation for the evolution of a rich and unique biota. In the Palaearctic, these maps show a clear pattern of decreasing diversity longitudinally, with species numbers dropping in the eastern half of Europe and remaining low throughout a large part of Russia, then increasing again towards Russia’s Far East and Korea. Areas with a high diversity of species assessed as threatened on the IUCN red list are largely restricted to the Mediterranean, Southwest Asia, and Japan, with clear hotspots found in the Levant and the southern half of Japan. 
    more » « less