skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Misconfiguration Software Testing for Failure Emergence in Autonomous Driving Systems
The optimization of a system’s configuration options is crucial for determining its performance and functionality, particularly in the case of autonomous driving software (ADS) systems because they possess a multitude of such options. Research efforts in the domain of ADS have prioritized the development of automated testing methods to enhance the safety and security of self-driving cars. Presently, search-based approaches are utilized to test ADS systems in a virtual environment, thereby simulating real-world scenarios. However, such approaches rely on optimizing the waypoints of ego cars and obstacles to generate diverse scenarios that trigger violations, and no prior techniques focus on optimizing the ADS from the perspective of configuration. To address this challenge, we present a framework called ConfVE, which is the first automated configuration testing framework for ADSes. ConfVE’s design focuses on the emergence of violations through rerunning scenarios generated by different ADS testing approaches under different configurations, leveraging 9 test oracles to enable previous ADS testing approaches to find more types of violations without modifying their designs or implementations and employing a novel technique to identify bug-revealing violations and eliminate duplicate violations. Our evaluation results demonstrate that ConfVE can discover 1,818 unique violations and reduce 74.19% of duplicate violations.  more » « less
Award ID(s):
2346561
PAR ID:
10618228
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Association for Computing Machinery
Date Published:
Journal Name:
Proceedings of the ACM on Software Engineering
Volume:
1
Issue:
FSE
ISSN:
2994-970X
Page Range / eLocation ID:
1913 to 1936
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Vehicles controlled by autonomous driving software (ADS) are expected to bring many social and economic benefits, but at the current stage not being broadly used due to concerns with regard to their safety. Virtual tests, where autonomous vehicles are tested in software simulation, are common practices because they are more efficient and safer compared to field operational tests. Specifically, search-based approaches are used to find particularly critical situations. These approaches provide an opportunity to automatically generate tests; however, systematically producing bug-revealing tests for ADS remains a major challenge. To address this challenge, we introduce DoppelTest, a test generation approach for ADSes that utilizes a genetic algorithm to discover bug-revealing violations by generating scenarios with multiple autonomous vehicles that account for traffic control (e.g., traffic signals and stop signs). Our extensive evaluation shows that DoppelTest can efficiently discover 123 bug-revealing violations for a production-grade ADS (Baidu Apollo) which we then classify into 8 unique bug categories. 
    more » « less
  2. ObjectiveThis study examined the impact of monitoring instructions when using an automated driving system (ADS) and road obstructions on post take-over performance in near-miss scenarios. BackgroundPast research indicates partial ADS reduces the driver’s situation awareness and degrades post take-over performance. Connected vehicle technology may alert drivers to impending hazards in time to safely avoid near-miss events. MethodForty-eight licensed drivers using ADS were randomly assigned to either the active driving or passive driving condition. Participants navigated eight scenarios with or without a visual obstruction in a distributed driving simulator. The experimenter drove the other simulated vehicle to manually cause near-miss events. Participants’ mean longitudinal velocity, standard deviation of longitudinal velocity, and mean longitudinal acceleration were measured. ResultsParticipants in passive ADS group showed greater, and more variable, deceleration rates than those in the active ADS group. Despite a reliable audiovisual warning, participants failed to slow down in the red-light running scenario when the conflict vehicle was occluded. Participant’s trust in the automated driving system did not vary between the beginning and end of the experiment. ConclusionDrivers interacting with ADS in a passive manner may continue to show increased and more variable deceleration rates in near-miss scenarios even with reliable connected vehicle technology. Future research may focus on interactive effects of automated and connected driving technologies on drivers’ ability to anticipate and safely navigate near-miss scenarios. ApplicationDesigners of automated and connected vehicle technologies may consider different timing and types of cues to inform the drivers of imminent hazard in high-risk scenarios for near-miss events. 
    more » « less
  3. Autonomous driving systems (ADS) require extensive testing and validation before deployment. However, it is tedious and time-consuming to construct traffic scenarios for ADS testing. In this paper, we propose TrafficComposer, a multi-modal traffic scenario construction approach for ADS testing. TrafficComposer takes as input a natural language (NL) description of a desired traffic scenario and a complementary traffic scene image. Then, it generates the corresponding traffic scenario in a simulator, such as CARLA and LGSVL. Specifically, TrafficComposer integrates high-level dynamic information about the traffic scenario from the NL description and intricate details about the surrounding vehicles, pedestrians, and the road network from the image. The information from the two modalities is complementary to each other and helps generate high-quality traffic scenarios for ADS testing. On a benchmark of 120 traffic scenarios, TrafficComposer achieves 97.0% accuracy, outperforming the best-performing baseline by 7.3%. Both direct testing and fuzz testing experiments on six ADSs prove the bug detection capabilities of the traffic scenarios generated by TrafficComposer. These scenarios can directly discover 37 bugs and help two fuzzing methods find 33%–124% more bugs serving as initial seeds. 
    more » « less
  4. The operational safety of Automated Driving System (ADS)-Operated Vehicles (AVs) are a rising concern with the deployment of AVs as prototypes being tested and also in commercial deployment. The robustness of safety evaluation systems is essential in determining the operational safety of AVs as they interact with human-driven vehicles. Extending upon earlier works of the Institute of Automated Mobility (IAM) that have explored the Operational Safety Assessment (OSA) metrics and infrastructure-based safety monitoring systems, in this work, we compare the performance of an infrastructure-based Light Detection And Ranging (LIDAR) system to an onboard vehicle-based LIDAR system in testing at the Maricopa County Department of Transportation SMARTDrive testbed in Anthem, Arizona. The sensor modalities are located in infrastructure and onboard the test vehicles, including LIDAR, cameras, a real-time differential GPS, and a drone with a camera. Bespoke localization and tracking algorithms are created for the LIDAR and cameras. In total, there are 26 different scenarios of the test vehicles navigating the testbed intersection; for this work, we are only considering car following scenarios. The LIDAR data collected from the infrastructure-based and onboard vehicle-based sensors system are used to perform object detection and multi-target tracking to estimate the velocity and position information of the test vehicles and use these values to compute OSA metrics. The comparison of the performance of the two systems involves the localization and tracking errors in calculating the position and the velocity of the subject vehicle, with the real-time differential GPS data serving as ground truth for velocity comparison and tracking results from the drone for OSA metrics comparison. 
    more » « less
  5. We propose a new probabilistic programming language for the design and analysis of perception systems, especially those based on machine learning. Specifically, we consider the problems of training a perception system to handle rare events, testing its performance under different conditions, and debugging failures. We show how a probabilistic programming language can help address these problems by specifying distributions encoding interesting types of inputs and sampling these to generate specialized training and test sets. More generally, such languages can be used for cyber-physical systems and robotics to write environment models, an essential prerequisite to any formal analysis. In this paper, we focus on systems like autonomous cars and robots, whose environment is a scene, a configuration of physical objects and agents. We design a domain-specific language, Scenic, for describing scenarios that are distributions over scenes. As a probabilistic programming language, Scenic allows assigning distributions to features of the scene, as well as declaratively imposing hard and soft constraints over the scene. We develop specialized techniques for sampling from the resulting distribution, taking advantage of the structure provided by Scenic's domain-specific syntax. Finally, we apply Scenic in a case study on a convolutional neural network designed to detect cars in road images, improving its performance beyond that achieved by state-of-the-art synthetic data generation methods. 
    more » « less