skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Almost isotropy-maximal manifolds of non-negative curvature
We extend the equivariant classification results of Escher and Searle for closed, simply connected, Riemannian n n -manifolds with non-negative sectional curvature admitting isometric isotropy-maximal torus actions to the class of such manifolds admitting isometric strictly almost isotropy-maximal torus actions. In particular, we prove that any such manifold is equivariantly diffeomorphic to the free, linear quotient by a torus of a product of spheres of dimensions greater than or equal to three.  more » « less
Award ID(s):
2204324
PAR ID:
10618442
Author(s) / Creator(s):
; ;
Publisher / Repository:
American Mathematical Society
Date Published:
Journal Name:
Transactions of the American Mathematical Society
ISSN:
0002-9947
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. If I I is an ideal in a Gorenstein ring S S , and S / I S/I is Cohen-Macaulay, then the same is true for any linked ideal I I’ ; but such statements hold for residual intersections of higher codimension only under restrictive hypotheses, not satisfied even by ideals as simple as the ideal L n L_{n} of minors of a generic 2 ×<#comment/> n 2 \times n matrix when n > 3 n>3 . In this paper we initiate the study of a different sort of Cohen-Macaulay property that holds for certain general residual intersections of the maximal (interesting) codimension, one less than the analytic spread of I I . For example, suppose that K K is the residual intersection of L n L_{n} by 2 n −<#comment/> 4 2n-4 general quadratic forms in L n L_{n} . In this situation we analyze S / K S/K and show that I n −<#comment/> 3 ( S / K ) I^{n-3}(S/K) is a self-dual maximal Cohen-Macaulay S / K S/K -module with linear free resolution over S S . The technical heart of the paper is a result about ideals of analytic spread 1 whose high powers are linearly presented. 
    more » « less
  2. We show that a compact Riemannian 3 3 -manifold M M with strictly convex simply connected boundary and sectional curvature K ≤<#comment/> a ≤<#comment/> 0 K\leq a\leq 0 is isometric to a convex domain in a complete simply connected space of constant curvature a a , provided that K ≡<#comment/> a K\equiv a on planes tangent to the boundary of M M . This yields a characterization of strictly convex surfaces with minimal total curvature in Cartan-Hadamard 3 3 -manifolds, and extends some rigidity results of Greene-Wu, Gromov, and Schroeder-Strake. Our proof is based on a recent comparison formula for total curvature of Riemannian hypersurfaces, which also yields some dual results for K ≥<#comment/> a ≥<#comment/> 0 K\geq a\geq 0
    more » « less
  3. Abstract Let ℳ 0 n {\mathcal{M}_{0}^{n}} be the class of closed, simply connected, non-negatively curved Riemannian n -manifolds admitting an isometric, effective, isotropy-maximal torus action. We prove that if M ∈ ℳ 0 n {M\in\mathcal{M}_{0}^{n}} , then M is equivariantly diffeomorphic to the free, linear quotient by a torus of a product of spheres of dimensions greater than or equal to 3. As a special case, we then prove the Maximal Symmetry Rank Conjecture for all M ∈ ℳ 0 n {M\in\mathcal{M}_{0}^{n}} . Finally, we showthe Maximal Symmetry Rank Conjecture for simply connected, non-negatively curved manifolds holds for dimensions less than or equal to 9 without additional assumptions on the torus action. 
    more » « less
  4. For every compact, connected manifold M M , we prove the existence of a sentence ϕ<#comment/> M \phi _M in the language of groups such that the homeomorphism group of another compact manifold N N satisfies ϕ<#comment/> M \phi _M if and only if N N is homeomorphic to M M . We prove an analogous statement for groups of homeomorphisms preserving Oxtoby–Ulam probability measures. 
    more » « less
  5. We introduce the concept of a type system  P \mathcal {P} , that is, a partition on the set of finite words over the alphabet  { 0 , 1 } \{0,1\} compatible with the partial action of Thompson’s group  V V , and associate a subgroup  Stab V ⁡<#comment/> ( P ) \operatorname {Stab}_{V}(\mathcal {P}) of  V V . We classify the finite simple type systems and show that the stabilizers of various simple type systems, including all finite simple type systems, are maximal subgroups of  V V . We also find an uncountable family of pairwise nonisomorphic maximal subgroups of  V V . These maximal subgroups occur as stabilizers of infinite simple type systems and have not been described in previous literature: specifically, they do not arise as stabilizers in V V of finite sets of points in Cantor space. Finally, we show that two natural conditions on subgroups of V V (both related to primitivity) are each satisfied only by V V itself, giving new ways to recognise when a subgroup of V V is not actually proper. 
    more » « less