Abstract We compared the performance of DREAM3D simulations in reproducing the long‐term radiation belt dynamics observed by Van Allen Probes over the entire year of 2017 with various boundary conditions (BCs) and model inputs. Specifically, we investigated the effects of three different outer boundary conditions, two different low‐energy boundary conditions for seed electrons, four different radial diffusion (RD) coefficients (DLL), four hiss wave models, and two chorus wave models from the literature. Using the outer boundary condition driven by GOES data, our benchmark simulation generally well reproduces the observed radiation belt dynamics insideL* = 6, with a better model performance at lowerμthan higherμ, whereμis the first adiabatic invariant. By varying the boundary conditions and inputs, we find that: (a) The data‐driven outer boundary condition is critical to the model performance, while adding in the data‐driven seed population doesn't further improve the performance. (b) The model shows comparable performance withDLLfrom Brautigam and Albert (2000,https://doi.org/10.1029/1999ja900344), Ozeke et al. (2014,https://doi.org/10.1002/2013ja019204), and Liu et al. (2016,https://doi.org/10.1002/2015gl067398), while withDLLfrom Ali et al. (2016,https://doi.org/10.1002/2016ja023002) the model shows less RD compared to data. (c) The model performance is similar with data‐based hiss models, but the results show faster loss is still needed inside the plasmasphere. (d) The model performs similarly with the two different chorus models, but better capturing the electron enhancement at higherμusing the Wang et al. (2019,https://doi.org/10.1029/2018ja026183) model due to its stronger wave power, since local heating for higher energy electrons is under‐reproduced in the current model.
more »
« less
Modeling Field Line Curvature Scattering Loss of 1–10 MeV Protons During Geomagnetic Storms
Abstract The proton radiation belt contains high fluxes of adiabatically trapped protons varying in energy from ∼one to hundreds of megaelectron volts (MeV). At large radial distances, magnetospheric field lines become stretched on the nightside of Earth and exhibit a small radius of curvatureRCnear the equator. This leads protons to undergo field line curvature (FLC) scattering, whereby changes to the first adiabatic invariant accumulate as field strength becomes nonuniform across a gyroorbit. The outer boundary of the proton belt at a given energy corresponds to the range of magneticLshell over which this transition to nonadiabatic motion takes place, and is sensitive to the occurrence of geomagnetic storms. In this work, we first find expressions for nightside equatorialRCand field strengthBeas functions of Dst andL* to fit the TS04 field model. We then apply the Tu et al. (2014,https://doi.org/10.1002/2014ja019864) condition for nonadiabatic onset to solve the outer boundaryL*, and refine our expression forRCto achieve agreement with Van Allen Probes observations of 1–50 MeV proton flux over the 2014–2018 era. Finally, we implement this nonadiabatic onset condition into the British Antarctic Survey proton belt model (BAS‐PRO) to solve the temporal evolution of proton fluxes atL ≤ 4. Compared with observations, BAS‐PRO reproduces storm losses due to FLC scattering, but there is a discrepancy in mid‐2017 that suggests a ∼5 MeV proton source not accounted for. Our work sheds light on outer zone proton belt variability at 1–10 MeV and demonstrates a useful tool for real‐time forecasting.
more »
« less
- Award ID(s):
- 2149782
- PAR ID:
- 10621409
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Space Physics
- Volume:
- 129
- Issue:
- 4
- ISSN:
- 2169-9380
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract During active geomagnetic periods both electrons and protons in the outer radiation belt have been frequently observed to penetrate to lowL(<4). Previous studies have demonstrated systematic differences in the deep penetration of the two species of particles, most notably that the penetration of protons is observed less frequently than for electrons of the same energies. A recent study by Mei et al. (2023,https://doi.org/10.1029/2022GL101921) showed that the time‐varying convection electric field contributes to the deeper penetration of low‐energy electrons and that a radial diffusion‐convection model can be used to reproduce the storm‐time penetration of lower‐energy electrons to lowerL. In this study, we analyze and provide physical explanations for the different behaviors of electrons and protons in terms of their penetration depth to lowL. A radial diffusion‐convection model is applied for the two species with coefficients that are adjusted according to the mass‐dependent relativistic effects on electron and proton drift velocity, and the different loss mechanisms included for each species. Electromagnetic ion cyclotron (EMIC) wave scattering losses for 100s of keV protons during a specific event are modeled and quantified; the results suggest that EMIC waves interacting with protons of lower energies than electrons can contribute to prevent the inward transport of the protons.more » « less
-
Abstract Magnetopause shadowing (MPS) effect could drive a concurrent dropout of radiation belt electrons and ring current protons. However, its relative role in the dropout of both plasma populations has not been well quantified. In this work, we study the simultaneous dropout of MeV electrons and 100s keV protons during an intense geomagnetic storm in May 2017. A radial diffusion model with an event‐specific last closed drift shell is used to simulate the MPS loss of both populations. The model well captures the fast shadowing loss of both populations atL* > 4.6, while the loss atL* < 4.6, possibly due to the electromagnetic ion cyclotron wave scattering, is not captured. The observed butterfly pitch angle distributions of electron fluxes in the initial loss phase are well reproduced by the model. The initial proton losses at low pitch angles are underestimated, potentially also contributed by other mechanisms such as field line curvature scattering.more » « less
-
Abstract Electrons in Earth's outer radiation belt are highly dynamic, with fluxes changing by up to orders of magnitude. The penetration of electrons from the outer belt to the inner belt is one such change observed during geomagnetic storms and was previously observed in electrons up to 1 MeV for some strong storms observed by the Van Allen Probes. We analyze pulse height analysis data from the Relativistic Electric and Proton Telescope (REPT) on the Van Allen Probes to produce electron flux measurements with lower minimum energy and significantly improved resolution compared to the standard REPT data and show that electron penetrations into the inner belt (L ≤ 2) extend to at least 1.3 MeV and penetrations into the slot region (2 < L < 2.8) extend to at least 1.5 MeV during certain geomagnetic storms. We also demonstrate that these penetrations are associated with butterfly pitch angle distributions from 1 to 1.3 MeV.more » « less
-
Abstract Following the largest magnetic storm in 20 years (10 May 2024), REPTile‐2 on NASA's CIRBE satellite identified two new radiation belts containing 1.3–5 MeV electrons aroundL = 2.5–3.5 and 6.8–20 MeV protons aroundL = 2. The region aroundL = 2.5–3.5 is usually devoid of relativistic electrons due to wave‐particle interactions that scatter them into the atmosphere. However, these 1.3–5 MeV electrons in this new belt seemed unaffected until a magnetic storm on 28 June 2024, perturbed the region. The long‐lasting nature of this new electron belt has physical implications for the dependence of electron wave‐particle interactions on energy, plasma density, and magnetic field strength. The enhancement of protons aroundL = 2 exceeded an order of magnitude between 6.8 and 15 MeV forming a distinct new proton belt that appears even more stable. CIRBE, after a year of successful operation, malfunctioned 25 days before the super storm but returned to functionality 1 month after the storm, enabling these discoveries.more » « less
An official website of the United States government

