Abstract Quiet-Sun regions cover most of the Sun's surface; their magnetic fields contribute significantly to solar chromospheric and coronal heating. However, characterizing the magnetic fields of the quiet Sun is challenging due to their weak polarization signal. The 4 m Daniel K. Inouye Solar Telescope (DKIST) is expected to improve our understanding of quiet-Sun magnetism. In this paper, we assess the diagnostic capability of the Diffraction Limited Near Infrared Spectropolarimeter (DL-NIRSP) instrument on DKIST for the energy transport processes in the quiet-Sun photosphere. To this end, we synthesize high-resolution, high-cadence Stokes profiles of the Fei630 nm lines using a realistic magnetohydrodynamic simulation, degrade them to emulate the DKIST/DL-NIRSP observations, and subsequently infer the vector magnetic and velocity fields. For the assessment, we first verify that a widely used flow tracking algorithm, the Differential Affine Velocity Estimator for Vector Magnetograms, works well for estimating the large-scale (>200 km) photospheric velocity fields with these high-resolution data. We then examine how the accuracy of the inferred velocity depends on the temporal resolution. Finally, we investigate the reliability of the Poynting flux estimate and its dependence on the model assumptions. The results suggest that the unsigned Poynting flux, estimated with existing schemes, can account for about 71.4% and 52.6% of the reference ground truth at and . However, the net Poynting flux tends to be significantly underestimated. The error mainly arises from the underestimated contribution of the horizontal motion. We discuss the implications for DKIST observations.
more »
« less
Spectropolarimetric Inversion in Four Dimensions with Deep Learning (SPIn4D). I. Overview, Magnetohydrodynamic Modeling, and Stokes Profile Synthesis
Abstract The National Science Foundation’s Daniel K. Inouye Solar Telescope (DKIST) will provide high-resolution, multiline spectropolarimetric observations that are poised to revolutionize our understanding of the Sun. Given the massive data volume, novel inference techniques are required to unlock its full potential. Here, we provide an overview of our “SPIn4D” project, which aims to develop deep convolutional neural networks (CNNs) for estimating the physical properties of the solar photosphere from DKIST spectropolarimetric observations. We describe the magnetohydrodynamic (MHD) modeling and the Stokes profile synthesis pipeline that produce the simulated output and input data, respectively. These data will be used to train a set of CNNs that can rapidly infer the four-dimensional MHD state vectors by exploiting the spatiotemporally coherent patterns in the Stokes profile time series. Specifically, our radiative MHD model simulates the small-scale dynamo actions that are prevalent in quiet-Sun and plage regions. Six cases with different mean magnetic fields have been explored; each case covers six solar-hours, totaling 109 TB in data volume. The simulation domain covers at least 25 × 25 × 8 Mm, with 16 × 16 × 12 km spatial resolution, extending from the upper convection zone up to the temperature minimum region. The outputs are stored at a 40 s cadence. We forward model the Stokes profile of two sets of Feilines at 630 and 1565 nm, which will be simultaneously observed by DKIST and can better constrain the parameter variations along the line of sight. The MHD model output and the synthetic Stokes profiles are publicly available, with 13.7 TB in the initial release.
more »
« less
- PAR ID:
- 10621828
- Publisher / Repository:
- American Astronomical Society
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 976
- Issue:
- 2
- ISSN:
- 0004-637X
- Page Range / eLocation ID:
- 204
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Between 2017 and 2024, the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory has observed numerous white-light solar flares (WLFs). HMI spectropolarimetric observations of certain WLFs, in particular the X9.3 flare of 2017 September 6, reveal one or more locations within the umbra or along the umbra/penumbra boundary of the flaring active region where the FeI6173 Å line briefly goes into full emission, indicating significant heating of the photosphere and lower chromosphere. For five flares featuring FeI6173 Å line-core emission, we perform spectropolarimetric analysis using HMI 90 s cadence Stokes data. For all investigated flares, line-core emission is observed to last for a single 90 s frame and is either concurrent with or followed by an increase in the line continuum intensity lasting one to two frames (90–180 s). Additionally, permanent changes to the StokesQ,U, and/orVprofiles were observed, indicating long-lasting nontransient changes to the photospheric magnetic field. These emissions coincided with local maxima in hard X-ray emission observed by Konus-Wind, as well as local maxima in the time derivative of soft X-ray emission observed by GOES 16-18. Comparison of the FeI6173 Å line profile synthesis for the ad hoc heating of the initial empirical VAL-S umbra model and quiescent-Sun (VAL-C-like) model indicates that the FeI6173 Å line emission in the white-light flare kernels could be explained by the strong heating of initially cool photospheric regions.more » « less
-
Abstract We present an interpretation of the recent Daniel K. Inouye Solar Telescope (DKIST) observations of propagating wave fronts in the lower solar atmosphere. Using MPS/University of Chicago MHD radiative magnetohydrodynamic simulations spanning the solar photosphere, the overshoot region, and the lower chromosphere, we identify three acoustic-wave source mechanisms, each occur at a different atmospheric height. We synthesize the DKIST Visible Broadband ImagerG-band, blue-continuum, and CaiiKsignatures of these waves at high spatial and temporal resolution, and conclude that the wave fronts observed by DKIST likely originate from acoustic sources at the top of the solar photosphere overshoot region and in the chromosphere proper. The overall importance of these local sources to the atmospheric energy and momentum budget of the solar atmosphere is unknown, but one of the excitation mechanisms identified (upward propagating shock interaction with down-welling chromospheric plasma resulting in acoustic radiation) may be an important shock dissipation mechanism. Additionally, the observed wave fronts may prove useful for ultralocal helioseismological inversions and promise to play an important diagnostic role at multiple atmospheric heights.more » « less
-
Context.Predicting geomagnetic events starts with an understanding of the Sun-Earth chain phenomena in which (interplanetary) coronal mass ejections (CMEs) play an important role in bringing about intense geomagnetic storms. It is not always straightforward to determine the solar source of an interplanetary coronal mass ejection (ICME) detected at 1 au. Aims.The aim of this study is to test by a magnetohydrodynamic (MHD) simulation the chain of a series of CME events detected from L1 back to the Sun in order to determine the relationship between remote and in situ CMEs. Methods.We analysed both remote-sensing observations and in situ measurements of a well-defined magnetic cloud (MC) detected at L1 occurring on 28 June 2013. The MHD modelling is provided by the 3D MHD European Heliospheric FORecasting Information Asset (EUHFORIA) simulation model. Results.After computing the background solar wind, we tested the trajectories of six CMEs occurring in a time window of five days before a well-defined MC at L1 that may act as the candidate of the MC. We modelled each CME using the cone model. The test involving all the CMEs indicated that the main driver of the well-defined, long-duration MC was a slow CME. For the corresponding MC, we retrieved the arrival time and the observed proton density. Conclusions.EUHFORIA confirms the results obtained in the George Mason data catalogue concerning this chain of events. However, their proposed solar source of the CME is disputable. The slow CME at the origin of the MC could have its solar source in a small, emerging region at the border of a filament channel at latitude and longitude equal to +14 degrees.more » « less
-
Abstract Diagnosing the spatiotemporal pattern of magnetic flux on the Sun is vital for understanding the origin of solar magnetism and activity. Here, we report a new form of flux appearance, magnetic outbreak, using observations with an extremely high spatial resolution of 0.″16 from the 1.6 m Goode Solar Telescope at the Big Bear Solar Observatory. Magnetic outbreak refers to an early growth of unipolar magnetic flux and its later explosion into fragments, in association with plasma upflow and exploding granulations; each individual fragment has flux of 10 16 –10 17 Mx, moving apart with a velocity of 0.5–2.2 km s −1 . The magnetic outbreak takes place in the hecto-Gauss region of pore moats. In this study, we identify six events of magnetic outbreak during 6 hr observations over an approximately 40″ × 40″ field of view. The newly discovered magnetic outbreak might be the first evidence of the long-anticipated convective blowup.more » « less
An official website of the United States government

