Abstract The existence of compact stellar remnants in the mass range 2–5M⊙has long been debated. This so-called lower-mass gap (LMG) was initially suggested by the lack of low-mass X-ray binary observations with accretors about 2–5M⊙, but it has recently been called into question following newer observations, including an LMG candidate with a millisecond pulsar (MSP) companion in the dense globular cluster NGC 1851. Here, we model NGC 1851 with a grid of similar dense star clusters utilizing the state-of-the-art Monte CarloN-body code Cluster Monte Carlo, and we specifically study the formation of LMG black holes (BHs). We demonstrate that both massive star evolution and dynamical interactions can contribute to forming LMG BHs. In general, the collapse of massive remnants formed through mergers of neutron stars (NSs) or massive white dwarfs produces the largest number of LMG BHs among all formation channels. However, in more massive clusters, supernova core collapse can contribute comparable numbers. Our NGC 1851-like models can reproduce MSP—LMG BH binaries similar to the observed system. Additionally, the LMG BHs can also become components of dynamically assembled binaries, and some will be in merging BH–NS systems similar to the recently detected gravitational wave source GW230529. However, the corresponding merger rate is probably ≲1 Gpc−3yr−1.
more »
« less
Precise Age for the Binary HD 21278 in the Young α Persei Cluster
Abstract We present a study of the double-lined spectroscopic binary HD 21278 that contains one of the brightest main-sequence stars in the youngαPersei open cluster. We analyzed new spectra and reanalyzed archived spectra to measure precise new radial velocity curves for the binary. We also obtained interferometric data using the CHARA Array at Mount Wilson to measure the sky positions of the two stars and the inclination of the ∼2 mas orbit. We determine that the two stars have masses of 5.381 ± 0.084M⊙and 3.353 ± 0.064M⊙. From isochrone fits, we find the cluster’s age to be 49 ± 7 Myr (using PARSEC models) or 49.5 ± 6 Myr (MIST models). Finally, we revisit the massive white dwarfs that are candidate escapees from theαPersei cluster to try to better characterize the massive end of the white dwarf initial–final mass relation. The implied progenitor masses challenge the idea that Chandrasekhar-mass white dwarfs are made by single stars with masses near 8M⊙.
more »
« less
- PAR ID:
- 10624004
- Publisher / Repository:
- American Astronomical Society / IOP Publishing
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 988
- Issue:
- 1
- ISSN:
- 0004-637X
- Page Range / eLocation ID:
- 113
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Since identifying the gap in the H-R Diagram (HRD) marking the transition between partially and fully-convective interiors, a unique type of slowly pulsating M dwarf has been proposed. These unstable M dwarfs provide new laboratories in which to understand how changing interior structures can produce potentially observable activity at the surface. In this work, we report the results of the largest high-resolution spectroscopic Hαemission survey to date spanning this transition region, including 480 M dwarfs observed using the CHIRON spectrograph at CTIO/SMARTS 1.5 m. We find that M dwarfs with Hαin emission are almost entirely found 0–0.5 mag above the top edge of the gap in the HRD, whereas effectively no stars in and below the gap show emission. Thus, the top edge of the gap marks a relatively sharp activity transition, and there is no anomalous Hαactivity for stars in the gap. We also identify a new region at 10.3 <MG< 10.8 on the main sequence where fewer M dwarfs exhibit Hαemission compared to M dwarfs above and below this magnitude range. Careful evaluation of the results in the literature indicates that (1) rotation and Hαactivity distributions on the main-sequence are closely related, and (2) fewer stars in this absolute magnitude range rotate in less than ∼13 days than populations surrounding this region. This result suggests that the most massive fully-convective stars lose their angular momentum faster than both partially convective stars and less massive fully-convective stars.more » « less
-
Abstract We present an analysis of new and archival data to the 20.506 minute LISA verification binary J052610.42+593445.32 (J0526+5934). Our joint spectroscopic and photometric analysis finds that the binary contains an unseenM1= 0.89 ± 0.11M⊙CO-core white dwarf primary with anM2= 0.38 ± 0.07M⊙post-core-burning subdwarf, or low-mass white dwarf, companion. Given the short orbital period and relatively large total binary mass, we find that LISA will detect this binary with signal-to-noise ratio 44 after 4 yr of observations. J0526+5934 is expected to merge within 1.8 ± 0.3 Myr and likely result in a D6scenario Type Ia supernova or form a He-rich star that will evolve into a massive single white dwarf.more » « less
-
Abstract We study the evolution of populations of binary stars within massive cluster-forming regions. We simulate the formation of young massive star clusters within giant molecular clouds with masses ranging from 2 × 104to 3.2 × 105M⊙. We use Torch, which couples stellar dynamics, magnetohydrodynamics, star and binary formation, stellar evolution, and stellar feedback through the Amuseframework. We find that the binary fraction decreases during cluster formation at all molecular cloud masses. The binaries’ orbital properties also change, with stronger and quicker changes in denser, more massive clouds. Most of the changes we see can be attributed to the disruption of binaries wider than 100 au, although the close binary fraction also decreases in the densest cluster-forming region. The binary fraction for O stars remains above 90%, but exchanges and dynamical hardening are ubiquitous, indicating that O stars undergo frequent few-body interactions early during the cluster formation process. Changes to the populations of binaries are a by-product of hierarchical cluster assembly: most changes to the binary population take place when the star formation rate is high, and there are frequent mergers between subclusters in the cluster-forming region. A universal primordial binary distribution based on observed inner companions in the Galactic field is consistent with the binary populations of young clusters with resolved stellar populations, and the scatter between clusters of similar masses could be explained by differences in their formation history.more » « less
-
Abstract We present a near-infrared (NIR) candidate star cluster catalog for the central kiloparsec of M82 based on new JWST NIRCam images. We identify star cluster candidates using the F250M filter, finding 1357 star cluster candidates with stellar masses >104M⊙. Compared to previous optical catalogs, nearly all (87%) of the candidates we identify are new. The star cluster candidates have a median intrinsic cluster radius of ≈1 pc and stellar masses up to 106M⊙. By comparing the color–color diagram to dust-freeyggdrasilstellar population models, we estimate that the star cluster candidates haveAV∼ 3−24 mag, corresponding toA2.5μm∼ 0.3−2.1 mag. There is still appreciable dust extinction toward these clusters into the NIR. We measure the stellar masses of the star cluster candidates, assuming ages of 0 and 8 Myr. The slope of the resulting cluster mass function isβ= 1.9 ± 0.2, in excellent agreement with studies of star clusters in other galaxies.more » « less
An official website of the United States government

