skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 8, 2026

Title: A poromechanical model for the branching of hydraulic fractures in rocks with pre-existing weak layers
ABSTRACT:Creation of a fracture network in a hydraulic fracturing process is essential for subsurface energy extraction and CO2 sequestration. It is facilitated by reactivation of pre-existing intersecting weak layers and cemented cracks in the rock. In this study, a poromechanical model is developed for the hydraulic fracturing process in rocks containing such pre-existing weak layers. Based on the mixture theory, the crack band model is used to simulate the growth of a crack system. The governing equations with the parameters for hydromechanical coupling are derived, to describe the evolution of the opening and branching of cracks caused by water injection. Microplane model M7 is adopted to characterize the deformation and fracturing of the solid skeleton of the rock, and the Poiseuille law is used to characterize fluid flow through the hydraulic fractures. Numerical simulations are performed to reproduce and interpret recently published laboratory-scale hydraulic fracturing experiments conducted at Los Alamos National Laboratory (LANL). In these experiments, the rock was represented by confined plaster slabs containing orthogonal intersecting weak layers of higher porosity. Numerical simulations reveal how poromechanical characteristics such as the Biot coefficient and the fluid injection rate lead to various typical fracture modes observed in the experiments. These modes include formation of one dominant planar crack or various orthogonal fracture networks.  more » « less
Award ID(s):
2029641
PAR ID:
10626897
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
ARMA
Date Published:
Format(s):
Medium: X
Location:
Santa Fe, New Mexico
Sponsoring Org:
National Science Foundation
More Like this
  1. Hydraulic fracturing arises as a method to enhance oil and gas production, and also as a way to recover geothermal energy. It is, therefore, essential to understand how injecting a fluid inside a rock reservoir will affect its surroundings. Hydraulic fracturing processes can be strongly affected by the interaction between two mechanisms: the elastic effects caused by the hydraulic pressure applied inside fractures and the poro-mechanical effects caused by the fluid infiltration inside the porous media (i.e. fluid diffusivity); this, in turn, is affected by the injection rate used. The interaction between poro-elastic mechanisms, particularly the effect of the fluid diffusivity, in the hydraulic fracturing processes is not well-understood and is investigated in this paper. This study aims to experimentally and theoretically comprehend the effects of the injection rate on crack propagation and on pore pressures, when flaws pre-fabricated in prismatic gypsum specimens are hydraulically pressurized. In order to accomplish this, laboratory experiments were performed using two injection rates (2 and 20 ml/min), applied by an apparatus consisting of a pressure enclosure with an impermeable membrane in both faces of the specimen, which allowed one to observe the growth of a fluid front from the pre-fabricated flaws to the unsaturated porous media (i.e. rock), before fracturing took place. It was observed that the fracturing pressures and patterns are injection-rate-dependent. This was interpreted to be caused by the different pore pressures that developed in the rock matrix, which resulted from the significantly distinct fluid fronts observed for the two injection rates tested. 
    more » « less
  2. ABSTRACT:The mechanism of formation of natural cracks in sedimentary rocks in the geologic past is an important problem in hydraulic fracturing. Why are the natural cracks roughly parallel and equidistant, and why is the spacing in the order of 10 cm rather than 1 cm or 100 cm? Fracture mechanics alone cannot answer these questions. Here it is proposed that fracture mechanics must be coupled with the diffusion of solute ions (Na+ and Cl− are considered here), driven by an osmotic pressure gradient. Parallel equidistant cracks are considered to be subcritical and governed by the Charles-Evans law. The evolution in solute concentration also affects the solvent pressure in the pores and cracks, altering the resistance to frictional sliding. Only steady-state propagation and periodic cracks are studied. An analytical solution of the crack spacing as a function of the properties of the rock as well as the solvent and solute, and the imposed far-field deformation is obtained. Finally, the stability of the growth of parallel cracks is proven by examining the second variation of free energy. Stability of the periodic growth state is also considered. 1 INTRODUCTIONThe deep layers of sedimentary rocks such as shale and sandstone are usually intersected by systems of nearly parallel natural cracks either filled by mineral deposits or closed by creep over a million year life span. Their spacing is roughly uniform and is on the order of 0.1 m (rather than 1 m or 0.01m). These cracks likely play an important role in hydraulic fracturing for gas or oil recovery (aka fracking, fraccing or frac) (Rahimi-Aghdam et al., 2019, e.g.). Therefore, understanding the mechanism of their formation in the distant geologic past is of interest.What controls the spacing of the nearly parallel cracks in shale? According to the fracture mechanics alone, the crack spacing is arbitrary. If propagating parallel equidistant cracks are in a critical state, stability analysis shows that many cracks would have to stop growing, causing a great increase of their average spacing, which was obviously not the case (Bažant et al., 2014). 
    more » « less
  3. ABSTRACT:Long-term deep sequestration of CO2-rich brine in deep formations of ultramafic rock (e.g. Oman serpentinized harzburgite) will be feasible only if a network of hydraulic cracks could be produced and made to grow for years and decades. Fraccing of gas- or oil-bearing shales has a similar objective. The following points are planned to be made in the presentation in Golden. 1) A branching of fracture can be analyzed only if the fracture is modeled by a band with triaxial tensorial damage, for which the new smooth Lagrangian crack band model is effective. 2) To achieve a progressive growth of the fracture network one will need to manipulate the osmotic pressure gradients by changing alkali metal ion concentration in pore fluid. 3) A standardized experimental framework to measure rock permeability at various ion concentrations and various osmotic pressure gradients is needed, and will be presented. 1 INTRODUCTIONCarbon dioxide (CO2) emissions by human activities is the largest contributor to global warming; therefore, effective carbon sequestration technologies attract great amount of interest. One emerging and promising technology for storing CO2 in the subsurface permanently is through carbon mineralization in mafic and ultramafic rock (Kelemen and Matter, 2008). Despite the abundance of these types of rock in the Earth's upper crust (Matter et al., 2016), the rate of this process in nature is too slow to reduce CO2 emissions effectively (Seifritz, 1990). One of the key challenges to achieve a sustainable and large-scale storage of CO2 by mineralization is to engineer a progressive growth of a fracture network conveying water with dissolved CO2 to reach a gradually increasing volume of the mafic rock formation. The CO2 rich water often cannot penetrate the tight matrix of silica-rich serpentinized harzburgites because under high concentrations of CO2, the wetting angle of CO2 -bearing water-rock-rock interface exceeds the critical value of 60 degrees. Therefore, the presence of a family of cracks is the only means by which CO2 -bearing fluids can interact with matrix of ultramafic rock (Bruce Watson and Brenan, 1987). Lateral fracture branching from a major fracture provides a sustainable fluid pathway and therefore is essential for continued rock-water geochemical reactions that lead to mineralization of carbonate minerals. Realistic computational modeling of hydraulic fractures in peridotite or basalt must involve lateral fracture branching and account for stress distribution changes between solid and fluid phases under constant tectonic stress, triggered by pore exposure to fluid pressure in hydraulic cracks. 
    more » « less
  4. The interaction between cracks and inclusions plays an important role in the fracture behavior of particulate composites. It is commonly recognized that an inclusion stiffer than the matrix tends to deflect an approaching crack away while a softer inclusion attracts the crack. Here, we demonstrate by analytical modeling and numerical simulations that the crack-inclusion interaction can be tuned by an applied T-stress. Under a sufficiently large compressive applied T-stress, cracks can be attracted to stiffer inclusions while repelled by softer ones, thus reversing the conventional trend. Potential applications of this work include composite electrodes in lithium-ion batteries and hydraulic fracturing. 
    more » « less
  5. Abstract. Progressive fracturing contributes to structural degradation of natural rock arches and other freestanding rock landforms. However, methods to detect structural changes arising from fracturing are limited, particularly at sites with difficult access and high cultural value, where non-invasive approaches are essential. This study aims to determine how fractures affect the dynamic properties of rock arches, focusing on resonance modes as indicators of structural health conditions. We hypothesize that damage resulting from fracture propagation may influence specific resonance modes that can be identified through ambient vibration modal analysis. We characterized the dynamic properties (i.e., resonance frequencies, damping ratios, and mode shapes) of Hunter Canyon Arch, Utah (USA), using spectral and cross-correlation analyses of data generated from an array of nodal geophones. Results revealed properties of nine resonance modes with frequencies between 1 and 12 Hz. Experimental data were then compared to numerical models with homogeneous and heterogeneous compositions, the latter implementing weak mechanical zones in areas of mapped fractures. All numerical solutions replicated the first two resonance modes of the arch, indicating these modes are insensitive to structural complexity derived from fractures. Meanwhile, heterogenous models with discrete fracture zones succeeded in matching the frequency and shape of one additional higher mode, indicating this mode is sensitive to the presence of fractures and thus most likely to respond to structural change from fracture propagation. An evolutionary crack damage model was then applied to simulate fracture propagation, confirming that only this higher mode is sensitive to structural damage resulting from fracture growth. While examination of fundamental modes is common practice in structural health monitoring studies, our results suggest that analysis of higher-order resonance modes can be more informative for characterizing fracture-driven structural damage. 
    more » « less