Implicit neural networks are a general class of learning models that replace the layers in traditional feedforward models with implicit algebraic equations. Compared to traditional learning models, implicit networks offer competitive performance and reduced memory consumption. However, they can remain brittle with respect to input adversarial perturbations. This paper proposes a theoretical and computational framework for robustness verification of implicit neural networks; our framework blends together mixed monotone systems theory and contraction theory. First, given an implicit neural network, we introduce a related embedded network and show that, given an infinity-norm box constraint on the input, the embedded network provides an infinity-norm box overapproximation for the output of the original network. Second, using infinity-matrix measures, we propose sufficient conditions for well-posedness of both the original and embedded system and design an iterative algorithm to compute the infinity-norm box robustness margins for reachability and classification problems. Third, of independent value, we show that employing a suitable relative classifier variable in our analysis will lead to tighter bounds on the certified adversarial robustness in classification problems. Finally, we perform numerical simulations on a Non-Euclidean Monotone Operator Network (NEMON) trained on the MNIST dataset. In these simulations, we compare the accuracy and run time of our mixed monotone contractive approach with the existing robustness verification approaches in the literature for estimating the certified adversarial robustness. 
                        more » 
                        « less   
                    This content will become publicly available on July 14, 2026
                            
                            LEVIS: Large Exact Verifiable Input Spaces for Neural Networks
                        
                    
    
            The robustness of neural networks is crucial in safety-critical applications, where identifying a reliable input space is essential for effective model selection, robustness evaluation, and the development of reliable control strategies. Most existing robustness verification methods assess the worst-case output under the assumption that the input space is known. However, precisely identifying a verifiable input space , where no adversarial examples exist, is challenging due to the possible high dimensionality, discontinuity, and non-convex nature of the input space. To address this challenge, we propose a novel framework, LEVIS, comprising LEVIS- and LEVIS-. LEVIS- identifies a single, large verifiable ball that intersects at least two boundaries of a bounded region , while LEVIS- systematically captures the entirety of the verifiable space by integrating multiple verifiable balls. Our contributions are fourfold: we introduce a verification framework, LEVIS, incorporating two optimization techniques for computing nearest and directional adversarial points based on mixed-integer programming (MIP); to enhance scalability, we integrate complementary constrained (CC) optimization with a reduced MIP formulation, achieving up to a 17-fold reduction in runtime by approximating the verifiable region in a principled way; we provide a theoretical analysis characterizing the properties of the verifiable balls obtained through LEVIS-; and we validate our approach across diverse applications, including electrical power flow regression and image classification, demonstrating performance improvements and visualizing the geometric properties of the verifiable region. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2130706
- PAR ID:
- 10627524
- Publisher / Repository:
- Proc. of the International Conference on Machine Learning
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Neural networks are an increasingly common tool for solving problems that require complex analysis and pattern matching, such as identifying stop signs in a self driving car or processing medical imagery during diagnosis. Accordingly, verification of neural networks for safety and correctness is of great importance, as mispredictions can have catastrophic results in safety critical domains. As neural networks are known to be sensitive to small changes in input, leading to vulnerabilities and adversarial attacks, analyzing the robustness of networks to small changes in input is a key piece of evaluating their safety and correctness. However, there are many real-world scenarios where the requirements of robustness are not clear cut, and it is crucial to develop measures that assess the level of robustness of a given neural network model and compare levels of robustness across different models, rather than using a binary characterization such as robust vs. not robust. We believe there is great need for developing scalable quantitative robustness verification techniques for neural networks. Formal verification techniques can provide guarantees of correctness, but most existing approaches do not provide quantitative robustness measures and are not effective in analyzing real-world network sizes. On the other hand, sampling-based quantitative robustness is not hindered much by the size of networks but cannot provide sound guarantees of quantitative results. We believe more research is needed to address the limitations of both symbolic and sampling-based verification approaches and create sound, scalable techniques for quantitative robustness verification of neural networks.more » « less
- 
            We consider the verification of input-relational properties defined over deep neural networks (DNNs) such as robustness against universal adversarial perturbations, monotonicity, etc. Precise verification of these properties requires reasoning about multiple executions of the same DNN. We introduce a novel concept of difference tracking to compute the difference between the outputs of two executions of the same DNN at all layers. We design a new abstract domain, DiffPoly for efficient difference tracking that can scale large DNNs. DiffPoly is equipped with custom abstract transformers for common activation functions (ReLU, Tanh, Sigmoid, etc.) and affine layers and can create precise linear cross-execution constraints. We implement an input-relational verifier for DNNs called RaVeN which uses DiffPoly and linear program formulations to handle a wide range of input-relational properties. Our experimental results on challenging benchmarks show that by leveraging precise linear constraints defined over multiple executions of the DNN, RaVeN gains substantial precision over baselines on a wide range of datasets, networks, and input-relational properties.more » « less
- 
            Vision transformers (ViTs) have recently set off a new wave in neural architecture design thanks to their record-breaking performance in various vision tasks. In parallel, to fulfill the goal of deploying ViTs into real-world vision applications, their robustness against potential malicious attacks has gained increasing attention. In particular, recent works show that ViTs are more robust against adversarial attacks as compared with convolutional neural networks (CNNs), and conjecture that this is because ViTs focus more on capturing global interactions among different input/feature patches, leading to their improved robustness to local perturbations imposed by adversarial attacks. In this work, we ask an intriguing question: “Under what kinds of perturbations do ViTs become more vulnerable learners compared to CNNs?” Driven by this question, we first conduct a comprehensive experiment regarding the robustness of both ViTs and CNNs under various existing adversarial attacks to understand the underlying reason favoring their robustness. Based on the drawn insights, we then propose a dedicated attack framework, dubbed Patch-Fool, that fools the self-attention mechanism by attacking its basic component (i.e., a single patch) with a series of attention-aware optimization techniques. Interestingly, our Patch-Fool framework shows for the first time that ViTs are not necessarily more robust than CNNs against adversarial perturbations. In particular, we find that ViTs are more vulnerable learners compared with CNNs against our Patch-Fool attack which is consistent across extensive experiments, and the observations from Sparse/Mild Patch-Fool, two variants of Patch-Fool, indicate an intriguing insight that the perturbation density and strength on each patch seem to be the key factors that influence the robustness ranking between ViTs and CNNs. It can be expected that our Patch-Fool framework will shed light on both future architecture designs and training schemes for robustifying ViTs towards their real-world deployment. Our codes are available at https://github.com/RICE-EIC/Patch-Fool.more » « less
- 
            Deep learning models have achieved high performance in a wide range of applications. Recently, however, there have been increasing concerns about the fragility of many of those models to adversarial approaches and out-of-distribution inputs. A way to investigate and potentially address model fragility is to develop the ability to provide interpretability to model predictions. To this end, input attribution approaches such as Grad-CAM and integrated gradients have been introduced to address model interpretability. Here, we combine adversarial and input attribution approaches in order to achieve two goals. The first is to investigate the impact of adversarial approaches on input attribution. The second is to benchmark competing input attribution approaches. In the context of the image classification task, we find that models trained with adversarial approaches yield dramatically different input attribution matrices from those obtained using standard techniques for all considered input attribution approaches. Additionally, by evaluating the signal-(typical input attribution of the foreground)-to-noise (typical input attribution of the background) ratio and correlating it to model confidence, we are able to identify the most reliable input attribution approaches and demonstrate that adversarial training does increase prediction robustness. Our approach can be easily extended to contexts other than the image classification task and enables users to increase their confidence in the reliability of deep learning models.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
