Abstract We report statistically significant detection of Hi21 cm emission from intermediate-redshift (z ≈ 0.2–0.6) galaxies. By leveraging multisightline galaxy survey data from the Cosmic Ultraviolet Baryon Survey and deep radio observations from the MeerKAT Absorption Line Survey, we have established a sample of ≈6000 spectroscopically identified galaxies in 11 distinct fields to constrain the neutral gas content at intermediate redshifts. The galaxies sample a broad range in stellar mass, from to , with a median of and a wide range in redshift fromz ≈ 0.24 toz ≈ 0.63 with a median of 〈z〉med = 0.44. While no individual galaxies show detectable Hiemission, the emission line signal is detected in the stacked spectra of all subsamples at greater than 4σsignificance. The observed total Hi21 cm line flux translates to a Himass,MH I≈1010M⊙. We find a high Hi-to-stellar-mass ratio ofMHI/Mstar ≈ 6 for low-mass galaxies with (>3.7σ). For galaxies with , we findMHI/Mstar ≈ 0.3 (>4.7σ). In addition, the redshift evolution of Himass, 〈MH I〉, in both low- and high-mass field galaxies, inferred from the stacked emission-line signal, aligns well with the expectation from the cosmic star formation history. This suggests that the overall decline in the cosmic star formation activity across the general galaxy population may be connected to a decreasing supply of neutral hydrogen. Finally, our analysis has revealed significant 21 cm signals at distances greater than 75 kpc from these intermediate-redshift galaxies, indicating a substantial reservoir of Higas in their extended surroundings.
more »
« less
This content will become publicly available on May 15, 2026
Virgo Filaments. V. Disrupting the Baryon Cycle in the NGC 5364 Galaxy Group
Abstract The Virgo Filament Survey (VFS) is a comprehensive study of galaxies that reside in the extended filamentary structures surrounding the Virgo Cluster, out to 12 virial radii. The primary goal is to characterize all of the dominant baryonic components within galaxies and to understand whether and how they are affected by the filament environment. A key constituent of VFS is a narrowband Hαimaging survey of over 600 galaxies, VFS-Hα. The Hαimages reveal detailed, resolved maps of the ionized gas and massive star formation. This imaging is particularly powerful as a probe of environmentally induced quenching because different physical processes affect the spatial distribution of star formation in different ways. In this paper, we present the first results from the VFS-Hαfor the NGC 5364 group, a low-mass ( ) system located at the western edge of the Virgo III filament. We combine Hαimaging with resolved Hiobservations from MeerKAT for eight group members. These galaxies exhibit peculiar morphologies, including strong distortions in the stars and the gas, truncated Hiand Hαdisks, H itails, extraplanar Hαemission, and off-center Hαemission. These signatures are suggestive of environmental processing such as tidal interactions, ram pressure stripping, and starvation. We quantify the role of ram pressure stripping expected in this group, and find that it can explain the cases of Hitails and truncated Hαfor all but one of the disk-dominated galaxies. Our observations indicate that multiple physical mechanisms are disrupting the baryon cycle in these group galaxies.
more »
« less
- PAR ID:
- 10628169
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- The Astrophysical Journal
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 985
- Issue:
- 1
- ISSN:
- 0004-637X
- Page Range / eLocation ID:
- 81-103
- Subject(s) / Keyword(s):
- Galaxy groups Galaxy quenching Galaxy environments Large-scale structure of the universe Cosmic web 597 2040 2029 902 330 Astrophysics of Galaxies
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We discuss five blue stellar systems in the direction of the Virgo cluster, analogous to the enigmatic object SECCO 1 (AGC 226067). These objects were identified based on their optical and UV morphology and followed up with Hiobservations with the Very Large Array (and Green Bank Telescope), Multi Unit Spectroscopic Explorer (on the Very Large Telescope) optical spectroscopy, and Hubble Space Telescope imaging. These new data indicate that one system is a distant group of galaxies. The remaining four are extremely low mass (M*∼ 105M⊙), are dominated by young blue stars, have highly irregular and clumpy morphologies, are only a few kiloparsecs across, yet host an abundance of metal-rich, , Hiiregions. These high metallicities indicate that these stellar systems formed from gas stripped from much more massive galaxies. Despite the young age of their stellar populations, only one system is detected in Hi, while the remaining three have minimal (if any) gas reservoirs. Furthermore, two systems are surprisingly isolated and have no plausible parent galaxy within ∼30′ (∼140 kpc). Although tidal stripping cannot be conclusively excluded as the formation mechanism of these objects, ram pressure stripping more naturally explains their properties, in particular their isolation, owing to the higher velocities, relative to the parent system, that can be achieved. Therefore, we posit that most of these systems formed from ram-pressure-stripped gas removed from new infalling cluster members and survived in the intracluster medium long enough to become separated from their parent galaxies by hundreds of kiloparsecs and that they thus represent a new type of stellar system.more » « less
-
Abstract We have discovered the stellar counterpart to the ALFALFA Virgo 7 cloud complex, which has been thought to be optically dark and nearly star-free since its discovery in 2007. This ∼190 kpc long chain of enormous atomic gas clouds (MHi∼ 109M⊙) is embedded in the hot intracluster medium of the Virgo galaxy cluster but is isolated from any galaxy. Its faint, blue stellar counterpart, BC6, was identified in a visual search of archival optical and UV imaging. Follow-up observations with the Green Bank Telescope, Hobby–Eberly Telescope, and Hubble Space Telescope demonstrate that this faint counterpart is at the same velocity as the atomic gas, actively forming stars, and metal-rich (12 + (O/H) = 8.58 ± 0.25). We estimate its stellar mass to be only , making it one of the most gas-rich stellar systems known. Aside from its extraordinary gas content, the properties of BC6 are entirely consistent with those of a recently identified class of young, low-mass, isolated, and star-forming clouds in Virgo that appear to have formed via extreme ram pressure stripping events. We expand the existing discussion of the origin of this structure and suggest NGC 4522 as a likely candidate; however, the current evidence is not fully consistent with any of our proposed progenitor galaxies. We anticipate that other “dark” gas clouds in Virgo may have similarly faint, star-forming counterparts. We aim to identify these through the help of a citizen science search of the entire cluster.more » « less
-
Abstract We investigate how cosmic web structures affect galaxy quenching in the IllustrisTNG (TNG100) cosmological simulations by reconstructing the cosmic web within each snapshot using the DisPerSE framework. We measure the comoving distance from each galaxy with stellar mass to the nearest node (dnode) and the nearest filament spine (dfil) to study the dependence of both the median specific star formation rate (〈sSFR〉) and the median gas fraction (〈fgas〉) on these distances. We find that the 〈sSFR〉 of galaxies is only dependent on the cosmic web environment atz< 2, with the dependence increasing with time. Atz≤ 0.5, galaxies are quenched atdnode≲ 1 Mpc, and have significantly suppressed star formation atdfil≲ 1 Mpc, trends driven mostly by satellite galaxies. Atz≤ 1, in contrast to the monotonic drop in 〈sSFR〉 of galaxies with decreasingdnodeanddfil, galaxies—both centrals and satellites—experience an upturn in 〈sSFR〉 atdnode≲ 0.2 Mpc. Much of this cosmic web dependence of star formation activity can be explained by an evolution in 〈fgas〉. Our results suggest that in the past ∼10 Gyr, low-mass satellites are quenched by rapid gas stripping in dense environments near nodes and gradual gas starvation in intermediate-density environments near filaments. At earlier times, cosmic web structures efficiently channeled cold gas into most galaxies. State-of-the-art ongoing spectroscopic surveys such as the Sloan Digital Sky Survey and DESI, as well as those planned with the Subaru Prime Focus Spectrograph, JWST, and Roman, are required to test our predictions against observations.more » « less
-
Abstract I employ the Lucy rectification algorithm to recover the inclination-corrected distribution of local disk galaxies in the plane of absolute magnitude (Mi) and Hivelocity width (W20). By considering the inclination angle as a random variable with a known probability distribution, the novel approach eliminates one major source of uncertainty in studies of the Tully–Fisher relation: inclination angle estimation from axial ratio. Leveraging the statistical strength derived from the entire sample of 28,264 Hi-selected disk galaxies atz< 0.06 from the Arecibo Legacy Fast ALFA survey, I show that the restored distribution follows a sharp correlation that is approximately a power law between −16 >Mi> −22: , withM0= −19.77± 0.04 andβ= 4.39 ± 0.06. At the brighter end (Mi< −22), the slope of the correlation decreases toβ≈ 3.3, confirming previous results. Because the method accounts for measurement errors, the intrinsic dispersion of the correlation is directly measured: dex between −17 >Mi> −23, whileσ(Mi) decreases from ∼0.8 in slow rotators to ∼0.4 in fast rotators. The statistical rectification method holds significant potential, especially in the studies of intermediate-to-high-redshift samples, where limited spatial resolution hinders precise measurements of inclination angles.more » « less
An official website of the United States government
