This content will become publicly available on May 1, 2026
Elucidating the Role of Ferroelectric in Memory Window Expansion of Ferroelectric FETs With Gate-Side Injection
- Award ID(s):
- 2344819
- PAR ID:
- 10628240
- Publisher / Repository:
- IEEE
- Date Published:
- Journal Name:
- IEEE Transactions on Electron Devices
- Volume:
- 72
- Issue:
- 5
- ISSN:
- 0018-9383
- Page Range / eLocation ID:
- 2708 to 2715
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Hafnia (HfO 2 ) is a promising material for emerging chip applications due to its high- κ dielectric behavior, suitability for negative capacitance heterostructures, scalable ferroelectricity, and silicon compatibility. The lattice dynamics along with phononic properties such as thermal conductivity, contraction, and heat capacity are under-explored, primarily due to the absence of high quality single crystals. Herein, we report the vibrational properties of a series of HfO 2 crystals stabilized with yttrium (chemical formula HfO 2 : x Y, where x = 20, 12, 11, 8, and 0%) and compare our findings with a symmetry analysis and lattice dynamics calculations. We untangle the effects of Y by testing our calculations against the measured Raman and infrared spectra of the cubic, antipolar orthorhombic, and monoclinic phases and then proceed to reveal the signature modes of polar orthorhombic hafnia. This work provides a spectroscopic fingerprint for several different phases of HfO 2 and paves the way for an analysis of mode contributions to high- κ dielectric and ferroelectric properties for chip technologies.more » « less
-
Abstract Freestanding slender fluid filaments of room‐temperature ferroelectric nematic liquid crystals are described. They are stabilized either by internal electric fields of bound charges formed due to polarization splay or by external voltage applied between suspending wires. The phenomenon is similar to those observed in dielectric fluids, such as deionized water, except that in ferroelectric nematic materials the voltages required are three orders of magnitudes smaller and the aspect ratio is much higher. The observed ferroelectric fluid threads are not only unique and novel but also offer measurements of basic physical quantities, such as the ferroelectric polarization and viscosity. Ferroelectric nematic fluid threads may have practical applications in nano‐fluidic micron‐size logic devices, switches, and relays.more » « less
-
Ferroelectricity in van der Waals (vdW) layered material has attracted a great deal of interest recently. CuInP2S6 (CIPS), the only vdW layered material whose ferroelectricity in the bulk was demonstrated by direct polarization measurements, was shown to remain ferroelectric down to a thickness of a few nanometers. However, its ferroelectric properties have just started to be explored in the context of potential device applications. We report here the preparation and measurements of metal-ferroelectric semiconductor-metal heterostructures using nanosheets of CIPS obtained by mechanical exfoliation. Four bias voltage and polarization dependent resistive states were observed in the current–voltage characteristics, which we attribute to the formation of ferroelectric Schottky diode, along with switching behavior.more » « less
-
null (Ed.)Indium Selenide (In 2 Se 3 ) is a newly emerged van der Waals (vdW) ferroelectric material, which unlike traditional insulating ferroelectric materials, is a semiconductor with a bandgap of about 1.36 eV. Ferroelectric diodes and transistors based on In 2 Se 3 have been demonstrated. However, the interplay between light and electric polarization in In 2 Se 3 has not been explored. In this paper, we found that the polarization in In 2 Se 3 can be programmed by optical stimuli, due to its semiconducting nature, where the photo generated carriers in In 2 Se 3 can alter the screening field and lead to polarization reversal. Utilizing these unique properties of In 2 Se 3 , we demonstrated a new type of multifunctional device based on 2D heterostructures, which can concurrently serve as a logic gate, photodetector, electronic memory and photonic memory. This dual electrical and optical operation of the memories can simplify the device architecture and offer additional functionalities, such as ultrafast optical erase of large memory arrays. In addition, we show that dual-gate structure can address the partial switching problem commonly observed in In 2 Se 3 ferroelectric transistors, as the two gates can enhance the vertical electric field and facilitate the polarization switching in the semiconducting In 2 Se 3 . These discovered effects are of general nature and should be observable in any ferroelectric semiconductor. These findings deepen the understanding of polarization switching and light-polarization interaction in semiconducting ferroelectric materials and open up their applications in multifunctional electronic and photonic devices.more » « less
An official website of the United States government
